West African monsoon dynamics and precipitation: the competition between global SST warming and CO2 increase in CMIP5 idealized simulations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-04-29

AUTHORS

Marco Gaetani, Cyrille Flamant, Sophie Bastin, Serge Janicot, Christophe Lavaysse, Frederic Hourdin, Pascale Braconnot, Sandrine Bony

ABSTRACT

Climate variability associated with the West African monsoon (WAM) has important environmental and socio-economic impacts in the region. However, state-of-the-art climate models still struggle in producing reliable climate predictions. An important cause of this low predictive skill is the sensitivity of climate models to different forcings. In this study, the mechanisms linking the WAM dynamics to the CO2 forcing are investigated, by comparing the effect of the CO2 direct radiative effect with its indirect effect mediated by the global sea surface warming. The July-to-September WAM variability is studied in climate simulations extracted from the Coupled Model Intercomparison Project Phase 5 archive, driven by prescribed sea surface temperature (SST). The individual roles of global SST warming and CO2 atmospheric concentration increase are investigated through idealized experiments simulating a 4 K warmer SST and a quadrupled CO2 concentration, respectively. Results show opposite and competing responses in the WAM dynamics and precipitation. A dry response (−0.6 mm/day) to the SST warming is simulated in the Sahel, with dryer conditions over western Sahel (−0.8 mm/day). Conversely, the CO2 increase produces wet conditions (+0.5 mm/day) in the Sahel, with the strongest response over central-eastern Sahel (+0.7 mm/day). The associated responses in the atmospheric dynamics are also analysed, showing that the SST warming affects the Sahelian precipitation through modifications in the global tropical atmospheric dynamics, reducing the importance of the regional drivers, while the CO2 increase reinforces the coupling between precipitation and regional dynamics. A general agreement in model responses demonstrates the robustness of the identified mechanisms linking the WAM dynamics to the CO2 direct and indirect forcing, and indicates that these primary mechanisms are captured by climate models. Results also suggest that the spread in future projections may be caused by unbalanced model responses to the CO2 direct and indirect forcing. More... »

PAGES

1353-1373

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-016-3146-z

DOI

http://dx.doi.org/10.1007/s00382-016-3146-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002904840


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique, LMD-IPSL, UPMC Univ. Paris 06 Sorbonne Universit\u00e9s, Ecole Normale Sup\u00e9rieur, Ecole Polytechnique, CNRS, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire Atmosph\u00e8res, Milieux, Observations Spatiales, LATMOS-IPSL, UPMC Univ. Paris 06 Sorbonne Universit\u00e9s, UVSQ, CNRS, Paris, France", 
            "Laboratoire de M\u00e9t\u00e9orologie Dynamique, LMD-IPSL, UPMC Univ. Paris 06 Sorbonne Universit\u00e9s, Ecole Normale Sup\u00e9rieur, Ecole Polytechnique, CNRS, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaetani", 
        "givenName": "Marco", 
        "id": "sg:person.010655347536.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010655347536.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire Atmosph\u00e8res, Milieux, Observations Spatiales, LATMOS-IPSL, UPMC Univ. Paris 06 Sorbonne Universit\u00e9s, UVSQ, CNRS, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire Atmosph\u00e8res, Milieux, Observations Spatiales, LATMOS-IPSL, UPMC Univ. Paris 06 Sorbonne Universit\u00e9s, UVSQ, CNRS, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Flamant", 
        "givenName": "Cyrille", 
        "id": "sg:person.01363056747.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363056747.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire Atmosph\u00e8res, Milieux, Observations Spatiales, LATMOS-IPSL, UPMC Univ. Paris 06 Sorbonne Universit\u00e9s, UVSQ, CNRS, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire Atmosph\u00e8res, Milieux, Observations Spatiales, LATMOS-IPSL, UPMC Univ. Paris 06 Sorbonne Universit\u00e9s, UVSQ, CNRS, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bastin", 
        "givenName": "Sophie", 
        "id": "sg:person.011206506621.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011206506621.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire d\u2019Oc\u00e9anographie et du Climat: Exp\u00e9rimentation et Approches Num\u00e9riques, LOCEAN-IPSL, UPMC Univ. Paris 06 Sorbonne Universit\u00e9s, IRD, MNHM, CNRS, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.503329.e", 
          "name": [
            "Laboratoire d\u2019Oc\u00e9anographie et du Climat: Exp\u00e9rimentation et Approches Num\u00e9riques, LOCEAN-IPSL, UPMC Univ. Paris 06 Sorbonne Universit\u00e9s, IRD, MNHM, CNRS, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Janicot", 
        "givenName": "Serge", 
        "id": "sg:person.0671027553.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671027553.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Joint Research Centre, European Commission, Ispra, Italy", 
          "id": "http://www.grid.ac/institutes/grid.434554.7", 
          "name": [
            "Joint Research Centre, European Commission, Ispra, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lavaysse", 
        "givenName": "Christophe", 
        "id": "sg:person.015364473336.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015364473336.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique, LMD-IPSL, UPMC Univ. Paris 06 Sorbonne Universit\u00e9s, Ecole Normale Sup\u00e9rieur, Ecole Polytechnique, CNRS, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire de M\u00e9t\u00e9orologie Dynamique, LMD-IPSL, UPMC Univ. Paris 06 Sorbonne Universit\u00e9s, Ecole Normale Sup\u00e9rieur, Ecole Polytechnique, CNRS, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hourdin", 
        "givenName": "Frederic", 
        "id": "sg:person.016441554113.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016441554113.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire des Sciences du Climat et de l\u2019Environnement, LSCE-IPSL, UVSQ, CEA, CNRS, Gif-Sur-Yvette, France", 
          "id": "http://www.grid.ac/institutes/grid.457340.1", 
          "name": [
            "Laboratoire des Sciences du Climat et de l\u2019Environnement, LSCE-IPSL, UVSQ, CEA, CNRS, Gif-Sur-Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Braconnot", 
        "givenName": "Pascale", 
        "id": "sg:person.014515414211.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014515414211.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique, LMD-IPSL, UPMC Univ. Paris 06 Sorbonne Universit\u00e9s, Ecole Normale Sup\u00e9rieur, Ecole Polytechnique, CNRS, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire de M\u00e9t\u00e9orologie Dynamique, LMD-IPSL, UPMC Univ. Paris 06 Sorbonne Universit\u00e9s, Ecole Normale Sup\u00e9rieur, Ecole Polytechnique, CNRS, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bony", 
        "givenName": "Sandrine", 
        "id": "sg:person.013647160343.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10584-011-0149-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015300331", 
          "https://doi.org/10.1007/s10584-011-0149-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-009-0625-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032543975", 
          "https://doi.org/10.1007/s00382-009-0625-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-010-0778-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045401315", 
          "https://doi.org/10.1007/s00382-010-0778-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014424374", 
          "https://doi.org/10.1007/s003820050316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-009-0599-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028851503", 
          "https://doi.org/10.1007/s00382-009-0599-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-009-0553-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026867578", 
          "https://doi.org/10.1007/s00382-009-0553-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-010-0867-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004291041", 
          "https://doi.org/10.1007/s00382-010-0867-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-009-0545-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050316414", 
          "https://doi.org/10.1007/s00382-009-0545-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo1799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023320468", 
          "https://doi.org/10.1038/ngeo1799"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-04-29", 
    "datePublishedReg": "2016-04-29", 
    "description": "Climate variability associated with the West African monsoon (WAM) has important environmental and socio-economic impacts in the region. However, state-of-the-art climate models still struggle in producing reliable climate predictions. An important cause of this low predictive skill is the sensitivity of climate models to different forcings. In this study, the mechanisms linking the WAM dynamics to the CO2 forcing are investigated, by comparing the effect of the CO2 direct radiative effect with its indirect effect mediated by the global sea surface warming. The July-to-September WAM variability is studied in climate simulations extracted from the Coupled Model Intercomparison Project Phase 5 archive, driven by prescribed sea surface temperature (SST). The individual roles of global SST warming and CO2 atmospheric concentration increase are investigated through idealized experiments simulating a 4\u00a0K warmer SST and a quadrupled CO2 concentration, respectively. Results show opposite and competing responses in the WAM dynamics and precipitation. A dry response (\u22120.6\u00a0mm/day) to the SST warming is simulated in the Sahel, with dryer conditions over western Sahel (\u22120.8\u00a0mm/day). Conversely, the CO2 increase produces wet conditions (+0.5\u00a0mm/day) in the Sahel, with the strongest response over central-eastern Sahel (+0.7\u00a0mm/day). The associated responses in the atmospheric dynamics are also analysed, showing that the SST warming affects the Sahelian precipitation through modifications in the global tropical atmospheric dynamics, reducing the importance of the regional drivers, while the CO2 increase reinforces the coupling between precipitation and regional dynamics. A general agreement in model responses demonstrates the robustness of the identified mechanisms linking the WAM dynamics to the CO2 direct and indirect forcing, and indicates that these primary mechanisms are captured by climate models. Results also suggest that the spread in future projections may be caused by unbalanced model responses to the CO2 direct and indirect forcing.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-016-3146-z", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "keywords": [
      "sea surface temperature", 
      "West African monsoon", 
      "global SST warming", 
      "SST warming", 
      "WAM dynamics", 
      "climate models", 
      "indirect forcing", 
      "atmospheric dynamics", 
      "CO2 increase", 
      "Coupled Model Intercomparison Project Phase 5", 
      "Model Intercomparison Project Phase 5", 
      "prescribed sea surface temperatures", 
      "West African monsoon dynamics", 
      "warmer sea surface temperatures", 
      "model response", 
      "art climate models", 
      "African monsoon dynamics", 
      "direct radiative effect", 
      "low predictive skill", 
      "global sea surface", 
      "reliable climate predictions", 
      "tropical atmospheric dynamics", 
      "WAM variability", 
      "Sahelian precipitation", 
      "African monsoon", 
      "monsoon dynamics", 
      "climate simulations", 
      "climate variability", 
      "climate predictions", 
      "different forcings", 
      "phase 5", 
      "predictive skill", 
      "radiative effects", 
      "western Sahel", 
      "future projections", 
      "dryer conditions", 
      "sea surface", 
      "surface temperature", 
      "dry responses", 
      "regional drivers", 
      "Sahel", 
      "forcing", 
      "warming", 
      "precipitation", 
      "wet conditions", 
      "CO2 concentration", 
      "socio-economic impacts", 
      "regional dynamics", 
      "CO2", 
      "variability", 
      "general agreement", 
      "CMIP5", 
      "monsoon", 
      "strong response", 
      "primary mechanism", 
      "concentration increases", 
      "dynamics", 
      "indirect effects", 
      "projections", 
      "region", 
      "simulations", 
      "model", 
      "drivers", 
      "conditions", 
      "increase", 
      "temperature", 
      "surface", 
      "concentration", 
      "impact", 
      "prediction", 
      "agreement", 
      "response", 
      "results", 
      "individual roles", 
      "importance", 
      "mechanism", 
      "coupling", 
      "spread", 
      "effect", 
      "experiments", 
      "sensitivity", 
      "study", 
      "cause", 
      "state", 
      "role", 
      "skills", 
      "modification", 
      "important cause", 
      "robustness", 
      "competition"
    ], 
    "name": "West African monsoon dynamics and precipitation: the competition between global SST warming and CO2 increase in CMIP5 idealized simulations", 
    "pagination": "1353-1373", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002904840"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-016-3146-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-016-3146-z", 
      "https://app.dimensions.ai/details/publication/pub.1002904840"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_709.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-016-3146-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3146-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3146-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3146-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3146-z'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      21 PREDICATES      124 URIs      106 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-016-3146-z schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0405
4 schema:author N82a40b2202a042f2abcbb57f1a5677f7
5 schema:citation sg:pub.10.1007/s00382-009-0545-4
6 sg:pub.10.1007/s00382-009-0553-4
7 sg:pub.10.1007/s00382-009-0599-3
8 sg:pub.10.1007/s00382-009-0625-5
9 sg:pub.10.1007/s00382-010-0778-2
10 sg:pub.10.1007/s00382-010-0867-2
11 sg:pub.10.1007/s003820050316
12 sg:pub.10.1007/s10584-011-0149-y
13 sg:pub.10.1038/ngeo1799
14 schema:datePublished 2016-04-29
15 schema:datePublishedReg 2016-04-29
16 schema:description Climate variability associated with the West African monsoon (WAM) has important environmental and socio-economic impacts in the region. However, state-of-the-art climate models still struggle in producing reliable climate predictions. An important cause of this low predictive skill is the sensitivity of climate models to different forcings. In this study, the mechanisms linking the WAM dynamics to the CO2 forcing are investigated, by comparing the effect of the CO2 direct radiative effect with its indirect effect mediated by the global sea surface warming. The July-to-September WAM variability is studied in climate simulations extracted from the Coupled Model Intercomparison Project Phase 5 archive, driven by prescribed sea surface temperature (SST). The individual roles of global SST warming and CO2 atmospheric concentration increase are investigated through idealized experiments simulating a 4 K warmer SST and a quadrupled CO2 concentration, respectively. Results show opposite and competing responses in the WAM dynamics and precipitation. A dry response (−0.6 mm/day) to the SST warming is simulated in the Sahel, with dryer conditions over western Sahel (−0.8 mm/day). Conversely, the CO2 increase produces wet conditions (+0.5 mm/day) in the Sahel, with the strongest response over central-eastern Sahel (+0.7 mm/day). The associated responses in the atmospheric dynamics are also analysed, showing that the SST warming affects the Sahelian precipitation through modifications in the global tropical atmospheric dynamics, reducing the importance of the regional drivers, while the CO2 increase reinforces the coupling between precipitation and regional dynamics. A general agreement in model responses demonstrates the robustness of the identified mechanisms linking the WAM dynamics to the CO2 direct and indirect forcing, and indicates that these primary mechanisms are captured by climate models. Results also suggest that the spread in future projections may be caused by unbalanced model responses to the CO2 direct and indirect forcing.
17 schema:genre article
18 schema:isAccessibleForFree true
19 schema:isPartOf Na06e40eb757a42ffb36e4a7d1be0d9b2
20 Nac4c79f3fc7140acaffefae13423f44b
21 sg:journal.1049631
22 schema:keywords African monsoon
23 African monsoon dynamics
24 CMIP5
25 CO2
26 CO2 concentration
27 CO2 increase
28 Coupled Model Intercomparison Project Phase 5
29 Model Intercomparison Project Phase 5
30 SST warming
31 Sahel
32 Sahelian precipitation
33 WAM dynamics
34 WAM variability
35 West African monsoon
36 West African monsoon dynamics
37 agreement
38 art climate models
39 atmospheric dynamics
40 cause
41 climate models
42 climate predictions
43 climate simulations
44 climate variability
45 competition
46 concentration
47 concentration increases
48 conditions
49 coupling
50 different forcings
51 direct radiative effect
52 drivers
53 dry responses
54 dryer conditions
55 dynamics
56 effect
57 experiments
58 forcing
59 future projections
60 general agreement
61 global SST warming
62 global sea surface
63 impact
64 importance
65 important cause
66 increase
67 indirect effects
68 indirect forcing
69 individual roles
70 low predictive skill
71 mechanism
72 model
73 model response
74 modification
75 monsoon
76 monsoon dynamics
77 phase 5
78 precipitation
79 prediction
80 predictive skill
81 prescribed sea surface temperatures
82 primary mechanism
83 projections
84 radiative effects
85 region
86 regional drivers
87 regional dynamics
88 reliable climate predictions
89 response
90 results
91 robustness
92 role
93 sea surface
94 sea surface temperature
95 sensitivity
96 simulations
97 skills
98 socio-economic impacts
99 spread
100 state
101 strong response
102 study
103 surface
104 surface temperature
105 temperature
106 tropical atmospheric dynamics
107 variability
108 warmer sea surface temperatures
109 warming
110 western Sahel
111 wet conditions
112 schema:name West African monsoon dynamics and precipitation: the competition between global SST warming and CO2 increase in CMIP5 idealized simulations
113 schema:pagination 1353-1373
114 schema:productId N4763ff8938b94ed6927f316c75662865
115 N9ceb49beeb2344aaa1f669754fd900b5
116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002904840
117 https://doi.org/10.1007/s00382-016-3146-z
118 schema:sdDatePublished 2022-12-01T06:35
119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
120 schema:sdPublisher Nade5d71d58024020adb0ba7afdf77a93
121 schema:url https://doi.org/10.1007/s00382-016-3146-z
122 sgo:license sg:explorer/license/
123 sgo:sdDataset articles
124 rdf:type schema:ScholarlyArticle
125 N1303262836fc411b80cdd92b04808468 rdf:first sg:person.0671027553.38
126 rdf:rest Na9401a1df93b4eda84e522da247855aa
127 N4763ff8938b94ed6927f316c75662865 schema:name doi
128 schema:value 10.1007/s00382-016-3146-z
129 rdf:type schema:PropertyValue
130 N4eb42f1f0e6f416b98e888019d67d08d rdf:first sg:person.014515414211.47
131 rdf:rest Nb85cb28c22d24b219db1fde7813f1b47
132 N82a40b2202a042f2abcbb57f1a5677f7 rdf:first sg:person.010655347536.19
133 rdf:rest Ncd3dc0e92566487d8f267b8a5cdaa407
134 N9ceb49beeb2344aaa1f669754fd900b5 schema:name dimensions_id
135 schema:value pub.1002904840
136 rdf:type schema:PropertyValue
137 N9ff2c3809bc3485b8fe70cbfd5c8fed5 rdf:first sg:person.016441554113.45
138 rdf:rest N4eb42f1f0e6f416b98e888019d67d08d
139 Na06e40eb757a42ffb36e4a7d1be0d9b2 schema:volumeNumber 48
140 rdf:type schema:PublicationVolume
141 Na9401a1df93b4eda84e522da247855aa rdf:first sg:person.015364473336.03
142 rdf:rest N9ff2c3809bc3485b8fe70cbfd5c8fed5
143 Nac4c79f3fc7140acaffefae13423f44b schema:issueNumber 3-4
144 rdf:type schema:PublicationIssue
145 Nade5d71d58024020adb0ba7afdf77a93 schema:name Springer Nature - SN SciGraph project
146 rdf:type schema:Organization
147 Nb85cb28c22d24b219db1fde7813f1b47 rdf:first sg:person.013647160343.22
148 rdf:rest rdf:nil
149 Nbc2a69299edf4d93b92b8eda4b1e8ff2 rdf:first sg:person.011206506621.63
150 rdf:rest N1303262836fc411b80cdd92b04808468
151 Ncd3dc0e92566487d8f267b8a5cdaa407 rdf:first sg:person.01363056747.37
152 rdf:rest Nbc2a69299edf4d93b92b8eda4b1e8ff2
153 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
154 schema:name Earth Sciences
155 rdf:type schema:DefinedTerm
156 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
157 schema:name Atmospheric Sciences
158 rdf:type schema:DefinedTerm
159 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
160 schema:name Oceanography
161 rdf:type schema:DefinedTerm
162 sg:journal.1049631 schema:issn 0930-7575
163 1432-0894
164 schema:name Climate Dynamics
165 schema:publisher Springer Nature
166 rdf:type schema:Periodical
167 sg:person.010655347536.19 schema:affiliation grid-institutes:grid.4444.0
168 schema:familyName Gaetani
169 schema:givenName Marco
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010655347536.19
171 rdf:type schema:Person
172 sg:person.011206506621.63 schema:affiliation grid-institutes:grid.4444.0
173 schema:familyName Bastin
174 schema:givenName Sophie
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011206506621.63
176 rdf:type schema:Person
177 sg:person.01363056747.37 schema:affiliation grid-institutes:grid.4444.0
178 schema:familyName Flamant
179 schema:givenName Cyrille
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363056747.37
181 rdf:type schema:Person
182 sg:person.013647160343.22 schema:affiliation grid-institutes:grid.4444.0
183 schema:familyName Bony
184 schema:givenName Sandrine
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22
186 rdf:type schema:Person
187 sg:person.014515414211.47 schema:affiliation grid-institutes:grid.457340.1
188 schema:familyName Braconnot
189 schema:givenName Pascale
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014515414211.47
191 rdf:type schema:Person
192 sg:person.015364473336.03 schema:affiliation grid-institutes:grid.434554.7
193 schema:familyName Lavaysse
194 schema:givenName Christophe
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015364473336.03
196 rdf:type schema:Person
197 sg:person.016441554113.45 schema:affiliation grid-institutes:grid.4444.0
198 schema:familyName Hourdin
199 schema:givenName Frederic
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016441554113.45
201 rdf:type schema:Person
202 sg:person.0671027553.38 schema:affiliation grid-institutes:grid.503329.e
203 schema:familyName Janicot
204 schema:givenName Serge
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671027553.38
206 rdf:type schema:Person
207 sg:pub.10.1007/s00382-009-0545-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050316414
208 https://doi.org/10.1007/s00382-009-0545-4
209 rdf:type schema:CreativeWork
210 sg:pub.10.1007/s00382-009-0553-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026867578
211 https://doi.org/10.1007/s00382-009-0553-4
212 rdf:type schema:CreativeWork
213 sg:pub.10.1007/s00382-009-0599-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028851503
214 https://doi.org/10.1007/s00382-009-0599-3
215 rdf:type schema:CreativeWork
216 sg:pub.10.1007/s00382-009-0625-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032543975
217 https://doi.org/10.1007/s00382-009-0625-5
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/s00382-010-0778-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045401315
220 https://doi.org/10.1007/s00382-010-0778-2
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/s00382-010-0867-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004291041
223 https://doi.org/10.1007/s00382-010-0867-2
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/s003820050316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014424374
226 https://doi.org/10.1007/s003820050316
227 rdf:type schema:CreativeWork
228 sg:pub.10.1007/s10584-011-0149-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1015300331
229 https://doi.org/10.1007/s10584-011-0149-y
230 rdf:type schema:CreativeWork
231 sg:pub.10.1038/ngeo1799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023320468
232 https://doi.org/10.1038/ngeo1799
233 rdf:type schema:CreativeWork
234 grid-institutes:grid.434554.7 schema:alternateName Joint Research Centre, European Commission, Ispra, Italy
235 schema:name Joint Research Centre, European Commission, Ispra, Italy
236 rdf:type schema:Organization
237 grid-institutes:grid.4444.0 schema:alternateName Laboratoire Atmosphères, Milieux, Observations Spatiales, LATMOS-IPSL, UPMC Univ. Paris 06 Sorbonne Universités, UVSQ, CNRS, Paris, France
238 Laboratoire de Météorologie Dynamique, LMD-IPSL, UPMC Univ. Paris 06 Sorbonne Universités, Ecole Normale Supérieur, Ecole Polytechnique, CNRS, Paris, France
239 schema:name Laboratoire Atmosphères, Milieux, Observations Spatiales, LATMOS-IPSL, UPMC Univ. Paris 06 Sorbonne Universités, UVSQ, CNRS, Paris, France
240 Laboratoire de Météorologie Dynamique, LMD-IPSL, UPMC Univ. Paris 06 Sorbonne Universités, Ecole Normale Supérieur, Ecole Polytechnique, CNRS, Paris, France
241 rdf:type schema:Organization
242 grid-institutes:grid.457340.1 schema:alternateName Laboratoire des Sciences du Climat et de l’Environnement, LSCE-IPSL, UVSQ, CEA, CNRS, Gif-Sur-Yvette, France
243 schema:name Laboratoire des Sciences du Climat et de l’Environnement, LSCE-IPSL, UVSQ, CEA, CNRS, Gif-Sur-Yvette, France
244 rdf:type schema:Organization
245 grid-institutes:grid.503329.e schema:alternateName Laboratoire d’Océanographie et du Climat: Expérimentation et Approches Numériques, LOCEAN-IPSL, UPMC Univ. Paris 06 Sorbonne Universités, IRD, MNHM, CNRS, Paris, France
246 schema:name Laboratoire d’Océanographie et du Climat: Expérimentation et Approches Numériques, LOCEAN-IPSL, UPMC Univ. Paris 06 Sorbonne Universités, IRD, MNHM, CNRS, Paris, France
247 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...