North Pacific decadal variability in the CMIP5 last millennium simulations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-02-26

AUTHORS

Laura E. Fleming, Kevin J. Anchukaitis

ABSTRACT

The Pacific ocean–atmosphere system exerts an important influence on the climate of Asia and North America, but the limited length of the observational record prevents a complete understanding of its bidecadal and multidecadal time scales. Paleoclimate reconstructions provide one source of information on longer time scales, although they differ in their estimation of the behavior of the Pacific decadal oscillation (PDO) prior to the instrumental period. Forced general circulation model simulations offer complementary long-term perspectives on both the history and dynamics of this important mode of variability. Here, we analyze the PDO in the ensemble of CMIP5/PMIP3 last millennium (past1000 + historical) simulations. We evaluate the modeled spatial, temporal, and spectral characteristics of this mode, as well as teleconnections between North Pacific variability and global climate. All models produce a mode of North Pacific variability over the last millennium with spatial patterns and spectral power density similar to observations. CCSM, FGOALS, and IPSL best reproduce observed spatial patterns, spectral characteristics, and teleconnections to terrestrial regions used in paleoclimate proxy reconstructions. In these simulations, the PDO shows no consistent response to solar or volcanic forcing. More... »

PAGES

3783-3801

References to SciGraph publications

  • 2013-07-26. Tropical pacific forcing of a 1998–1999 climate shift: observational analysis and climate model results for the boreal spring season in CLIMATE DYNAMICS
  • 2012-04-24. Multidecadal-to-centennial SST variability in the MPI-ESM simulation ensemble for the last millennium in CLIMATE DYNAMICS
  • 2001-12. Tree-ring estimates of Pacific decadal climate variability in CLIMATE DYNAMICS
  • 2013-03-20. GPCC's new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle in THEORETICAL AND APPLIED CLIMATOLOGY
  • 2007-09-13. Secular variation of the Pacific Decadal Oscillation, the North Pacific Oscillation and climatic jumps in a multi-millennial simulation in CLIMATE DYNAMICS
  • 2002-02. The Pacific Decadal Oscillation in JOURNAL OF OCEANOGRAPHY
  • 2014-10-01. Pacific Decadal Oscillation and its relation to the extratropical atmospheric variation in CMIP5 in CLIMATE DYNAMICS
  • 2012-07-11. Interdecadal variability/long-term changes in global precipitation patterns during the past three decades: global warming and/or pacific decadal variability? in CLIMATE DYNAMICS
  • 2013-02-24. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5 in CLIMATE DYNAMICS
  • 2012-08-11. Quantitative assessment of the climate components driving the pacific decadal oscillation in climate models in THEORETICAL AND APPLIED CLIMATOLOGY
  • 2008-05. Advancing decadal-scale climate prediction in the North Atlantic sector in NATURE
  • 2011-09-24. A comparison of the Medieval Warm Period, Little Ice Age and 20th century warming simulated by the FGOALS climate system model in CHINESE SCIENCE BULLETIN (CHINESE VERSION)
  • 2010-03-12. Mesoscale Disturbance and Ecological Response to Decadal Climatic Variability in the American Southwest in TREE RINGS AND NATURAL HAZARDS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00382-016-3041-7

    DOI

    http://dx.doi.org/10.1007/s00382-016-3041-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1028102164


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oceanography", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Joint Program in Oceanography/Applied Ocean Science and Engineering, Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA", 
                "Joint Program in Oceanography/Applied Ocean Science and Engineering, Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fleming", 
            "givenName": "Laura E.", 
            "id": "sg:person.014232043345.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014232043345.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Geography and Development and Laboratory of Tree Ring Research, University of Arizona, Tucson, AZ, USA", 
              "id": "http://www.grid.ac/institutes/grid.134563.6", 
              "name": [
                "Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA", 
                "School of Geography and Development and Laboratory of Tree Ring Research, University of Arizona, Tucson, AZ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Anchukaitis", 
            "givenName": "Kevin J.", 
            "id": "sg:person.013204527225.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013204527225.25"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00382-012-1636-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028914989", 
              "https://doi.org/10.1007/s00382-012-1636-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11434-011-4641-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018868892", 
              "https://doi.org/10.1007/s11434-011-4641-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820100177", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012807780", 
              "https://doi.org/10.1007/s003820100177"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-012-1361-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025449969", 
              "https://doi.org/10.1007/s00382-012-1361-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-90-481-8736-2_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003606027", 
              "https://doi.org/10.1007/978-90-481-8736-2_32"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00704-013-0860-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029404551", 
              "https://doi.org/10.1007/s00704-013-0860-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00704-012-0730-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008167053", 
              "https://doi.org/10.1007/s00704-012-0730-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-013-1891-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009147702", 
              "https://doi.org/10.1007/s00382-013-1891-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-012-1443-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003537875", 
              "https://doi.org/10.1007/s00382-012-1443-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-007-0307-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031322184", 
              "https://doi.org/10.1007/s00382-007-0307-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1015820616384", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052669234", 
              "https://doi.org/10.1023/a:1015820616384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06921", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026158887", 
              "https://doi.org/10.1038/nature06921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-014-2349-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027382762", 
              "https://doi.org/10.1007/s00382-014-2349-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-02-26", 
        "datePublishedReg": "2016-02-26", 
        "description": "Abstract\nThe Pacific ocean\u2013atmosphere system exerts an important influence on the climate of Asia and North America, but the limited length of the observational record prevents a complete understanding of its bidecadal and multidecadal time scales. Paleoclimate reconstructions provide one source of information on longer time scales, although they differ in their estimation of the behavior of the Pacific decadal oscillation (PDO) prior to the instrumental period. Forced general circulation model simulations offer complementary long-term perspectives on both the history and dynamics of this important mode of variability. Here, we analyze the PDO in the ensemble of CMIP5/PMIP3 last millennium (past1000\u00a0+\u00a0historical) simulations. We evaluate the modeled spatial, temporal, and spectral characteristics of this mode, as well as teleconnections between North Pacific variability and global climate. All models produce a mode of North Pacific variability over the last millennium with spatial patterns and spectral power density similar to observations. CCSM, FGOALS, and IPSL best reproduce observed spatial patterns, spectral characteristics, and teleconnections to terrestrial regions used in paleoclimate proxy reconstructions. In these simulations, the PDO shows no consistent response to solar or volcanic forcing.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00382-016-3041-7", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3136486", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3135270", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1049631", 
            "issn": [
              "0930-7575", 
              "1432-0894"
            ], 
            "name": "Climate Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "47"
          }
        ], 
        "keywords": [
          "Pacific Decadal Oscillation", 
          "last millennium simulations", 
          "North Pacific variability", 
          "Pacific variability", 
          "Pacific ocean-atmosphere system", 
          "North Pacific decadal variability", 
          "general circulation model simulations", 
          "paleoclimate proxy reconstructions", 
          "ocean-atmosphere system", 
          "Pacific decadal variability", 
          "multidecadal time scales", 
          "spatial patterns", 
          "circulation model simulations", 
          "time scales", 
          "climate of Asia", 
          "observed spatial patterns", 
          "Millennium Simulation", 
          "long time scales", 
          "volcanic forcing", 
          "proxy reconstructions", 
          "decadal variability", 
          "Decadal Oscillation", 
          "paleoclimate reconstructions", 
          "instrumental period", 
          "observational record", 
          "last millennium", 
          "global climate", 
          "model simulations", 
          "terrestrial regions", 
          "teleconnections", 
          "North America", 
          "long-term perspective", 
          "variability", 
          "climate", 
          "spectral characteristics", 
          "important mode", 
          "limited length", 
          "bidecadal", 
          "FGOALS", 
          "IPSL", 
          "important influence", 
          "forcing", 
          "CCSM", 
          "consistent response", 
          "reconstruction", 
          "millennium", 
          "scale", 
          "records", 
          "Asia", 
          "oscillations", 
          "ensemble", 
          "simulations", 
          "complete understanding", 
          "America", 
          "patterns", 
          "region", 
          "source", 
          "period", 
          "dynamics", 
          "characteristics", 
          "history", 
          "estimation", 
          "sources of information", 
          "spectral power density", 
          "influence", 
          "mode", 
          "model", 
          "understanding", 
          "information", 
          "density", 
          "system", 
          "response", 
          "length", 
          "behavior", 
          "perspective", 
          "power density", 
          "observations"
        ], 
        "name": "North Pacific decadal variability in the CMIP5 last millennium simulations", 
        "pagination": "3783-3801", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1028102164"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00382-016-3041-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00382-016-3041-7", 
          "https://app.dimensions.ai/details/publication/pub.1028102164"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_683.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00382-016-3041-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3041-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3041-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3041-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-3041-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    202 TRIPLES      21 PREDICATES      114 URIs      93 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00382-016-3041-7 schema:about anzsrc-for:04
    2 anzsrc-for:0405
    3 schema:author N6571808ebe2843d89b4b407bf9afbb09
    4 schema:citation sg:pub.10.1007/978-90-481-8736-2_32
    5 sg:pub.10.1007/s00382-007-0307-0
    6 sg:pub.10.1007/s00382-012-1361-9
    7 sg:pub.10.1007/s00382-012-1443-8
    8 sg:pub.10.1007/s00382-012-1636-1
    9 sg:pub.10.1007/s00382-013-1891-9
    10 sg:pub.10.1007/s00382-014-2349-4
    11 sg:pub.10.1007/s003820100177
    12 sg:pub.10.1007/s00704-012-0730-y
    13 sg:pub.10.1007/s00704-013-0860-x
    14 sg:pub.10.1007/s11434-011-4641-6
    15 sg:pub.10.1023/a:1015820616384
    16 sg:pub.10.1038/nature06921
    17 schema:datePublished 2016-02-26
    18 schema:datePublishedReg 2016-02-26
    19 schema:description Abstract The Pacific ocean–atmosphere system exerts an important influence on the climate of Asia and North America, but the limited length of the observational record prevents a complete understanding of its bidecadal and multidecadal time scales. Paleoclimate reconstructions provide one source of information on longer time scales, although they differ in their estimation of the behavior of the Pacific decadal oscillation (PDO) prior to the instrumental period. Forced general circulation model simulations offer complementary long-term perspectives on both the history and dynamics of this important mode of variability. Here, we analyze the PDO in the ensemble of CMIP5/PMIP3 last millennium (past1000 + historical) simulations. We evaluate the modeled spatial, temporal, and spectral characteristics of this mode, as well as teleconnections between North Pacific variability and global climate. All models produce a mode of North Pacific variability over the last millennium with spatial patterns and spectral power density similar to observations. CCSM, FGOALS, and IPSL best reproduce observed spatial patterns, spectral characteristics, and teleconnections to terrestrial regions used in paleoclimate proxy reconstructions. In these simulations, the PDO shows no consistent response to solar or volcanic forcing.
    20 schema:genre article
    21 schema:isAccessibleForFree false
    22 schema:isPartOf N5a749c55cc9140a6bfaf603d41b32f22
    23 N8a117bc272f041c08082af4cf0c188e4
    24 sg:journal.1049631
    25 schema:keywords America
    26 Asia
    27 CCSM
    28 Decadal Oscillation
    29 FGOALS
    30 IPSL
    31 Millennium Simulation
    32 North America
    33 North Pacific decadal variability
    34 North Pacific variability
    35 Pacific Decadal Oscillation
    36 Pacific decadal variability
    37 Pacific ocean-atmosphere system
    38 Pacific variability
    39 behavior
    40 bidecadal
    41 characteristics
    42 circulation model simulations
    43 climate
    44 climate of Asia
    45 complete understanding
    46 consistent response
    47 decadal variability
    48 density
    49 dynamics
    50 ensemble
    51 estimation
    52 forcing
    53 general circulation model simulations
    54 global climate
    55 history
    56 important influence
    57 important mode
    58 influence
    59 information
    60 instrumental period
    61 last millennium
    62 last millennium simulations
    63 length
    64 limited length
    65 long time scales
    66 long-term perspective
    67 millennium
    68 mode
    69 model
    70 model simulations
    71 multidecadal time scales
    72 observational record
    73 observations
    74 observed spatial patterns
    75 ocean-atmosphere system
    76 oscillations
    77 paleoclimate proxy reconstructions
    78 paleoclimate reconstructions
    79 patterns
    80 period
    81 perspective
    82 power density
    83 proxy reconstructions
    84 reconstruction
    85 records
    86 region
    87 response
    88 scale
    89 simulations
    90 source
    91 sources of information
    92 spatial patterns
    93 spectral characteristics
    94 spectral power density
    95 system
    96 teleconnections
    97 terrestrial regions
    98 time scales
    99 understanding
    100 variability
    101 volcanic forcing
    102 schema:name North Pacific decadal variability in the CMIP5 last millennium simulations
    103 schema:pagination 3783-3801
    104 schema:productId Nbb370e2c87e945fdbfc039051c98f64e
    105 Nfcfa9848ac0d489d8e033137737939ac
    106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028102164
    107 https://doi.org/10.1007/s00382-016-3041-7
    108 schema:sdDatePublished 2022-11-24T21:00
    109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    110 schema:sdPublisher Nd38acec3b59f49beadca2d50fd81f837
    111 schema:url https://doi.org/10.1007/s00382-016-3041-7
    112 sgo:license sg:explorer/license/
    113 sgo:sdDataset articles
    114 rdf:type schema:ScholarlyArticle
    115 N5a749c55cc9140a6bfaf603d41b32f22 schema:volumeNumber 47
    116 rdf:type schema:PublicationVolume
    117 N6571808ebe2843d89b4b407bf9afbb09 rdf:first sg:person.014232043345.37
    118 rdf:rest N8a6c9a5de04e469cb45cb0a39f79785b
    119 N8a117bc272f041c08082af4cf0c188e4 schema:issueNumber 12
    120 rdf:type schema:PublicationIssue
    121 N8a6c9a5de04e469cb45cb0a39f79785b rdf:first sg:person.013204527225.25
    122 rdf:rest rdf:nil
    123 Nbb370e2c87e945fdbfc039051c98f64e schema:name dimensions_id
    124 schema:value pub.1028102164
    125 rdf:type schema:PropertyValue
    126 Nd38acec3b59f49beadca2d50fd81f837 schema:name Springer Nature - SN SciGraph project
    127 rdf:type schema:Organization
    128 Nfcfa9848ac0d489d8e033137737939ac schema:name doi
    129 schema:value 10.1007/s00382-016-3041-7
    130 rdf:type schema:PropertyValue
    131 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Earth Sciences
    133 rdf:type schema:DefinedTerm
    134 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Oceanography
    136 rdf:type schema:DefinedTerm
    137 sg:grant.3135270 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-016-3041-7
    138 rdf:type schema:MonetaryGrant
    139 sg:grant.3136486 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-016-3041-7
    140 rdf:type schema:MonetaryGrant
    141 sg:journal.1049631 schema:issn 0930-7575
    142 1432-0894
    143 schema:name Climate Dynamics
    144 schema:publisher Springer Nature
    145 rdf:type schema:Periodical
    146 sg:person.013204527225.25 schema:affiliation grid-institutes:grid.134563.6
    147 schema:familyName Anchukaitis
    148 schema:givenName Kevin J.
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013204527225.25
    150 rdf:type schema:Person
    151 sg:person.014232043345.37 schema:affiliation grid-institutes:None
    152 schema:familyName Fleming
    153 schema:givenName Laura E.
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014232043345.37
    155 rdf:type schema:Person
    156 sg:pub.10.1007/978-90-481-8736-2_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003606027
    157 https://doi.org/10.1007/978-90-481-8736-2_32
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s00382-007-0307-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031322184
    160 https://doi.org/10.1007/s00382-007-0307-0
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s00382-012-1361-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025449969
    163 https://doi.org/10.1007/s00382-012-1361-9
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s00382-012-1443-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003537875
    166 https://doi.org/10.1007/s00382-012-1443-8
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s00382-012-1636-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028914989
    169 https://doi.org/10.1007/s00382-012-1636-1
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s00382-013-1891-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009147702
    172 https://doi.org/10.1007/s00382-013-1891-9
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s00382-014-2349-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027382762
    175 https://doi.org/10.1007/s00382-014-2349-4
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s003820100177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012807780
    178 https://doi.org/10.1007/s003820100177
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s00704-012-0730-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1008167053
    181 https://doi.org/10.1007/s00704-012-0730-y
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s00704-013-0860-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029404551
    184 https://doi.org/10.1007/s00704-013-0860-x
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s11434-011-4641-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018868892
    187 https://doi.org/10.1007/s11434-011-4641-6
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1023/a:1015820616384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052669234
    190 https://doi.org/10.1023/a:1015820616384
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/nature06921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026158887
    193 https://doi.org/10.1038/nature06921
    194 rdf:type schema:CreativeWork
    195 grid-institutes:None schema:alternateName Joint Program in Oceanography/Applied Ocean Science and Engineering, Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
    196 schema:name Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
    197 Joint Program in Oceanography/Applied Ocean Science and Engineering, Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
    198 rdf:type schema:Organization
    199 grid-institutes:grid.134563.6 schema:alternateName School of Geography and Development and Laboratory of Tree Ring Research, University of Arizona, Tucson, AZ, USA
    200 schema:name Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
    201 School of Geography and Development and Laboratory of Tree Ring Research, University of Arizona, Tucson, AZ, USA
    202 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...