Interpreting the inter-model spread in regional precipitation projections in the tropics: role of surface evaporation and cloud radiative effects View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-02-03

AUTHORS

Boutheina Oueslati, Sandrine Bony, Camille Risi, Jean-Louis Dufresne

ABSTRACT

In this study, we investigate and quantify different contributors to inter-model differences in regional precipitation projections among CMIP5 climate models. Contributors to the spread are very contrasted between land and ocean. While circulation changes dominate the spread over oceans and continental coasts, thermodynamic changes associated with water vapor increase dominate over inland regions. The inter-model spread in the dynamic component is associated with the change in atmospheric radiative cooling with warming, which largely relates to atmospheric cloud radiative effects. Differences in the thermodynamic component result from the differences in the change in surface evaporation that is explained by decreases in surface humidity and limited surface water availability over land. Secondary contributions to the inter-model spread in thermodynamic and dynamic components result respectively from present-day climatology (owing to the Clausius–Clapeyron scaling) and from the shape of the vertical velocity profile associated with changes in surface temperature gradients. Advancing the physical understanding of the cloud-circulation and precipitation-evaporation couplings and improving their representation in climate models may stand the best chance to reduce uncertainty in regional precipitation projections. More... »

PAGES

2801-2815

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-016-2998-6

DOI

http://dx.doi.org/10.1007/s00382-016-2998-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015116437


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "CRC, UMR 6282 Biog\u00e9osciences, CNRS/Universit\u00e9 de Bourgogne \u2013 Franche-Comt\u00e9, Dijon, France", 
          "id": "http://www.grid.ac/institutes/grid.5613.1", 
          "name": [
            "LMD, UMR 8539, IPSL, CNRS/Universit\u00e9 Pierre et Marie Curie, Paris, France", 
            "CRC, UMR 6282 Biog\u00e9osciences, CNRS/Universit\u00e9 de Bourgogne \u2013 Franche-Comt\u00e9, Dijon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oueslati", 
        "givenName": "Boutheina", 
        "id": "sg:person.015410546710.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015410546710.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LMD, UMR 8539, IPSL, CNRS/Universit\u00e9 Pierre et Marie Curie, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.423115.0", 
          "name": [
            "LMD, UMR 8539, IPSL, CNRS/Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bony", 
        "givenName": "Sandrine", 
        "id": "sg:person.013647160343.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LMD, UMR 8539, IPSL, CNRS/Universit\u00e9 Pierre et Marie Curie, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.423115.0", 
          "name": [
            "LMD, UMR 8539, IPSL, CNRS/Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Risi", 
        "givenName": "Camille", 
        "id": "sg:person.016677771051.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016677771051.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "LMD, UMR 8539, IPSL, CNRS/Universit\u00e9 Pierre et Marie Curie, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.423115.0", 
          "name": [
            "LMD, UMR 8539, IPSL, CNRS/Universit\u00e9 Pierre et Marie Curie, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dufresne", 
        "givenName": "Jean-Louis", 
        "id": "sg:person.01075255253.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075255253.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature01092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046916950", 
          "https://doi.org/10.1038/nature01092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo2247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009185086", 
          "https://doi.org/10.1038/ngeo2247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo1792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007551266", 
          "https://doi.org/10.1038/ngeo1792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041586707", 
          "https://doi.org/10.1038/nclimate1169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo2398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031423891", 
          "https://doi.org/10.1038/ngeo2398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo1799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023320468", 
          "https://doi.org/10.1038/ngeo1799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1344-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011190524", 
          "https://doi.org/10.1007/s00382-012-1344-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-011-1178-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014145652", 
          "https://doi.org/10.1007/s00382-011-1178-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo2345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015988743", 
          "https://doi.org/10.1038/ngeo2345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-011-1270-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035675356", 
          "https://doi.org/10.1007/s00382-011-1270-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10712-011-9159-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007387809", 
          "https://doi.org/10.1007/s10712-011-9159-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02-03", 
    "datePublishedReg": "2016-02-03", 
    "description": "Abstract\nIn this study, we investigate and quantify different contributors to inter-model differences in regional precipitation projections among CMIP5 climate models. Contributors to the spread are very contrasted between land and ocean. While circulation changes dominate the spread over oceans and continental coasts, thermodynamic changes associated with water vapor increase dominate over inland regions. The inter-model spread in the dynamic component is associated with the change in atmospheric radiative cooling with warming, which largely relates to atmospheric cloud radiative effects. Differences in the thermodynamic component result from the differences in the change in surface evaporation that is explained by decreases in surface humidity and limited surface water availability over land. Secondary contributions to the inter-model spread in thermodynamic and dynamic components result respectively from present-day climatology (owing to the Clausius\u2013Clapeyron scaling) and from the shape of the vertical velocity profile associated with changes in surface temperature gradients. Advancing the physical understanding of the cloud-circulation and precipitation-evaporation couplings and improving their representation in climate models may stand the best chance to reduce uncertainty in regional precipitation projections.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-016-2998-6", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9-10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "keywords": [
      "inter-model spread", 
      "regional precipitation projections", 
      "cloud radiative effect", 
      "precipitation projections", 
      "climate models", 
      "radiative effects", 
      "surface evaporation", 
      "atmospheric cloud radiative effect", 
      "limited surface water availability", 
      "present-day climatology", 
      "CMIP5 climate models", 
      "inter-model differences", 
      "water vapor increases", 
      "surface temperature gradient", 
      "surface water availability", 
      "circulation changes", 
      "atmospheric radiative", 
      "vertical velocity profiles", 
      "vapor increases", 
      "surface humidity", 
      "continental coast", 
      "inland regions", 
      "water availability", 
      "thermodynamic changes", 
      "dynamic component", 
      "secondary contribution", 
      "Ocean", 
      "temperature gradient", 
      "physical understanding", 
      "evaporation", 
      "land", 
      "different contributors", 
      "projections", 
      "climatology", 
      "warming", 
      "coast", 
      "tropics", 
      "radiative", 
      "velocity profiles", 
      "changes", 
      "humidity", 
      "contributor", 
      "gradient", 
      "uncertainty", 
      "components results", 
      "region", 
      "model", 
      "components", 
      "contribution", 
      "spread", 
      "profile", 
      "availability", 
      "differences", 
      "understanding", 
      "decrease", 
      "increase", 
      "coupling", 
      "results", 
      "shape", 
      "representation", 
      "effect", 
      "study", 
      "best chance", 
      "role", 
      "chance"
    ], 
    "name": "Interpreting the inter-model spread in regional precipitation projections in the tropics: role of surface evaporation and cloud radiative effects", 
    "pagination": "2801-2815", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015116437"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-016-2998-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-016-2998-6", 
      "https://app.dimensions.ai/details/publication/pub.1015116437"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_680.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-016-2998-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-2998-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-2998-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-2998-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-016-2998-6'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      101 URIs      81 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-016-2998-6 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0405
4 schema:author N6b96729e05b84469bd231396357e49c0
5 schema:citation sg:pub.10.1007/s00382-011-1178-y
6 sg:pub.10.1007/s00382-011-1270-3
7 sg:pub.10.1007/s00382-012-1344-x
8 sg:pub.10.1007/s10712-011-9159-6
9 sg:pub.10.1038/nature01092
10 sg:pub.10.1038/nclimate1169
11 sg:pub.10.1038/ngeo1792
12 sg:pub.10.1038/ngeo1799
13 sg:pub.10.1038/ngeo2247
14 sg:pub.10.1038/ngeo2345
15 sg:pub.10.1038/ngeo2398
16 schema:datePublished 2016-02-03
17 schema:datePublishedReg 2016-02-03
18 schema:description Abstract In this study, we investigate and quantify different contributors to inter-model differences in regional precipitation projections among CMIP5 climate models. Contributors to the spread are very contrasted between land and ocean. While circulation changes dominate the spread over oceans and continental coasts, thermodynamic changes associated with water vapor increase dominate over inland regions. The inter-model spread in the dynamic component is associated with the change in atmospheric radiative cooling with warming, which largely relates to atmospheric cloud radiative effects. Differences in the thermodynamic component result from the differences in the change in surface evaporation that is explained by decreases in surface humidity and limited surface water availability over land. Secondary contributions to the inter-model spread in thermodynamic and dynamic components result respectively from present-day climatology (owing to the Clausius–Clapeyron scaling) and from the shape of the vertical velocity profile associated with changes in surface temperature gradients. Advancing the physical understanding of the cloud-circulation and precipitation-evaporation couplings and improving their representation in climate models may stand the best chance to reduce uncertainty in regional precipitation projections.
19 schema:genre article
20 schema:isAccessibleForFree false
21 schema:isPartOf N8326f45c2f8b47618372e447b951c3e5
22 N8bc4d83b10d24c68b3acf0ff6395e2b0
23 sg:journal.1049631
24 schema:keywords CMIP5 climate models
25 Ocean
26 atmospheric cloud radiative effect
27 atmospheric radiative
28 availability
29 best chance
30 chance
31 changes
32 circulation changes
33 climate models
34 climatology
35 cloud radiative effect
36 coast
37 components
38 components results
39 continental coast
40 contribution
41 contributor
42 coupling
43 decrease
44 differences
45 different contributors
46 dynamic component
47 effect
48 evaporation
49 gradient
50 humidity
51 increase
52 inland regions
53 inter-model differences
54 inter-model spread
55 land
56 limited surface water availability
57 model
58 physical understanding
59 precipitation projections
60 present-day climatology
61 profile
62 projections
63 radiative
64 radiative effects
65 region
66 regional precipitation projections
67 representation
68 results
69 role
70 secondary contribution
71 shape
72 spread
73 study
74 surface evaporation
75 surface humidity
76 surface temperature gradient
77 surface water availability
78 temperature gradient
79 thermodynamic changes
80 tropics
81 uncertainty
82 understanding
83 vapor increases
84 velocity profiles
85 vertical velocity profiles
86 warming
87 water availability
88 water vapor increases
89 schema:name Interpreting the inter-model spread in regional precipitation projections in the tropics: role of surface evaporation and cloud radiative effects
90 schema:pagination 2801-2815
91 schema:productId Na1622f81c93d495cb804023b12235068
92 Nb73204179dda47509a7303acc9d28d8e
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015116437
94 https://doi.org/10.1007/s00382-016-2998-6
95 schema:sdDatePublished 2022-11-24T21:00
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher N2b1187e8ef8d478db825b6c794fa2a15
98 schema:url https://doi.org/10.1007/s00382-016-2998-6
99 sgo:license sg:explorer/license/
100 sgo:sdDataset articles
101 rdf:type schema:ScholarlyArticle
102 N2b1187e8ef8d478db825b6c794fa2a15 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N4e7a724048bb4de5804857e4d72277b1 rdf:first sg:person.01075255253.14
105 rdf:rest rdf:nil
106 N6b96729e05b84469bd231396357e49c0 rdf:first sg:person.015410546710.13
107 rdf:rest N7469aa1bf65341baac47f498ea69c330
108 N7469aa1bf65341baac47f498ea69c330 rdf:first sg:person.013647160343.22
109 rdf:rest Nabdba1f231994f3a93bf3378ce0f841a
110 N8326f45c2f8b47618372e447b951c3e5 schema:volumeNumber 47
111 rdf:type schema:PublicationVolume
112 N8bc4d83b10d24c68b3acf0ff6395e2b0 schema:issueNumber 9-10
113 rdf:type schema:PublicationIssue
114 Na1622f81c93d495cb804023b12235068 schema:name doi
115 schema:value 10.1007/s00382-016-2998-6
116 rdf:type schema:PropertyValue
117 Nabdba1f231994f3a93bf3378ce0f841a rdf:first sg:person.016677771051.12
118 rdf:rest N4e7a724048bb4de5804857e4d72277b1
119 Nb73204179dda47509a7303acc9d28d8e schema:name dimensions_id
120 schema:value pub.1015116437
121 rdf:type schema:PropertyValue
122 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
123 schema:name Earth Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
126 schema:name Atmospheric Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
129 schema:name Oceanography
130 rdf:type schema:DefinedTerm
131 sg:journal.1049631 schema:issn 0930-7575
132 1432-0894
133 schema:name Climate Dynamics
134 schema:publisher Springer Nature
135 rdf:type schema:Periodical
136 sg:person.01075255253.14 schema:affiliation grid-institutes:grid.423115.0
137 schema:familyName Dufresne
138 schema:givenName Jean-Louis
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075255253.14
140 rdf:type schema:Person
141 sg:person.013647160343.22 schema:affiliation grid-institutes:grid.423115.0
142 schema:familyName Bony
143 schema:givenName Sandrine
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22
145 rdf:type schema:Person
146 sg:person.015410546710.13 schema:affiliation grid-institutes:grid.5613.1
147 schema:familyName Oueslati
148 schema:givenName Boutheina
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015410546710.13
150 rdf:type schema:Person
151 sg:person.016677771051.12 schema:affiliation grid-institutes:grid.423115.0
152 schema:familyName Risi
153 schema:givenName Camille
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016677771051.12
155 rdf:type schema:Person
156 sg:pub.10.1007/s00382-011-1178-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1014145652
157 https://doi.org/10.1007/s00382-011-1178-y
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s00382-011-1270-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035675356
160 https://doi.org/10.1007/s00382-011-1270-3
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s00382-012-1344-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011190524
163 https://doi.org/10.1007/s00382-012-1344-x
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s10712-011-9159-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007387809
166 https://doi.org/10.1007/s10712-011-9159-6
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nature01092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046916950
169 https://doi.org/10.1038/nature01092
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nclimate1169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041586707
172 https://doi.org/10.1038/nclimate1169
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/ngeo1792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007551266
175 https://doi.org/10.1038/ngeo1792
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/ngeo1799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023320468
178 https://doi.org/10.1038/ngeo1799
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/ngeo2247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009185086
181 https://doi.org/10.1038/ngeo2247
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/ngeo2345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015988743
184 https://doi.org/10.1038/ngeo2345
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/ngeo2398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031423891
187 https://doi.org/10.1038/ngeo2398
188 rdf:type schema:CreativeWork
189 grid-institutes:grid.423115.0 schema:alternateName LMD, UMR 8539, IPSL, CNRS/Université Pierre et Marie Curie, Paris, France
190 schema:name LMD, UMR 8539, IPSL, CNRS/Université Pierre et Marie Curie, Paris, France
191 rdf:type schema:Organization
192 grid-institutes:grid.5613.1 schema:alternateName CRC, UMR 6282 Biogéosciences, CNRS/Université de Bourgogne – Franche-Comté, Dijon, France
193 schema:name CRC, UMR 6282 Biogéosciences, CNRS/Université de Bourgogne – Franche-Comté, Dijon, France
194 LMD, UMR 8539, IPSL, CNRS/Université Pierre et Marie Curie, Paris, France
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...