Spatial stabilization and intensification of moistening and drying rate patterns under future climate change View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-10-26

AUTHORS

Yann Chavaillaz, Sylvie Joussaume, Sandrine Bony, Pascale Braconnot

ABSTRACT

Precipitation projections are usually presented as the change in precipitation between a fixed current baseline and a particular time in the future. However, upcoming generations will be affected in a way probably more related to the moving trend in precipitation patterns, i.e. to the rate and the persistence of regional precipitation changes from one generation to the next, than to changes relative to a fixed current baseline. In this perspective, we propose an alternative characterization of the future precipitation changes predicted by general circulation models, focusing on the precipitation difference between two subsequent 20-year periods. We show that in a business-as-usual emission pathway, the moistening and drying rates increase by 30–40 %, both over land and ocean. As we move further over the twenty-first century, more regions exhibit a significant rate of precipitation change, while the patterns become geographically stationary and the trends persistent. The stabilization of the geographical rate patterns that occurs despite the acceleration of global warming can be physically explained: it results from the increasing contribution of thermodynamic processes compared to dynamic processes in the control of precipitation change. We show that such an evolution is already noticeable over the last decades, and that it could be reversed if strong mitigation policies were quickly implemented. The combination of intensification and increasing persistence of precipitation rate patterns may affect the way human societies and natural ecosystems adapt to climate change, especially in the Mediterranean basin, in Central America, in South Asia and in the Arctic. More... »

PAGES

951-965

References to SciGraph publications

  • 2008-07-22. Improved confidence in climate change projections of precipitation evaluated using daily statistics from the PRUDENCE ensemble in CLIMATE DYNAMICS
  • 2014-09-14. Global assessment of trends in wetting and drying over land in NATURE GEOSCIENCE
  • 2004-01-27. On dynamic and thermodynamic components of cloud changes in CLIMATE DYNAMICS
  • 2013-01-10. Physically Consistent Responses of the Global Atmospheric Hydrological Cycle in Models and Observations in SURVEYS IN GEOPHYSICS
  • 2011-08-09. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300 in CLIMATIC CHANGE
  • 2000-05. Consequences of changing biodiversity in NATURE
  • 2013-04-21. Robust direct effect of carbon dioxide on tropical circulation and regional precipitation in NATURE GEOSCIENCE
  • 2010-04-11. The potential to narrow uncertainty in projections of regional precipitation change in CLIMATE DYNAMICS
  • 2007-09-11. Mechanisms for the land/sea warming contrast exhibited by simulations of climate change in CLIMATE DYNAMICS
  • 2014-08-07. Timescales associated with climate change and their relevance in adaptation strategies in CLIMATIC CHANGE
  • 2013-03-03. Increase in the range between wet and dry season precipitation in NATURE GEOSCIENCE
  • 2007-07-23. Detection of human influence on twentieth-century precipitation trends in NATURE
  • 2016-03-31. Investigating the pace of temperature change and its implications over the twenty-first century in CLIMATIC CHANGE
  • 2009-10-15. Improved confidence in climate change projections of precipitation further evaluated using daily statistics from ENSEMBLES models in CLIMATE DYNAMICS
  • 2011-07-08. Regime dependent changes in global precipitation in CLIMATE DYNAMICS
  • 2010-12-31. Uncertainty in climate change projections: the role of internal variability in CLIMATE DYNAMICS
  • 2013-10-09. The projected timing of climate departure from recent variability in NATURE
  • 2014-05-04. Evolution of land surface air temperature trend in NATURE CLIMATE CHANGE
  • 2015-03-09. Near-term acceleration in the rate of temperature change in NATURE CLIMATE CHANGE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00382-015-2882-9

    DOI

    http://dx.doi.org/10.1007/s00382-015-2882-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1051286153


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Laboratoire des Sciences du Climat et de l\u2019Environnement (LSCE-IPSL), CEA/CNRS/UVSQ, Orme des Merisiers, 91191, Gif-sur-Yvette Cedex, France", 
              "id": "http://www.grid.ac/institutes/grid.457340.1", 
              "name": [
                "Laboratoire des Sciences du Climat et de l\u2019Environnement (LSCE-IPSL), CEA/CNRS/UVSQ, Orme des Merisiers, 91191, Gif-sur-Yvette Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chavaillaz", 
            "givenName": "Yann", 
            "id": "sg:person.011072774037.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011072774037.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire des Sciences du Climat et de l\u2019Environnement (LSCE-IPSL), CEA/CNRS/UVSQ, Orme des Merisiers, 91191, Gif-sur-Yvette Cedex, France", 
              "id": "http://www.grid.ac/institutes/grid.457340.1", 
              "name": [
                "Laboratoire des Sciences du Climat et de l\u2019Environnement (LSCE-IPSL), CEA/CNRS/UVSQ, Orme des Merisiers, 91191, Gif-sur-Yvette Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Joussaume", 
            "givenName": "Sylvie", 
            "id": "sg:person.010246040775.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010246040775.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique (LMD-IPSL), CNRS/Universit\u00e9 Pierre et Marie Curie, 4, Place Jussieu, 75252, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.463916.f", 
              "name": [
                "Laboratoire de M\u00e9t\u00e9orologie Dynamique (LMD-IPSL), CNRS/Universit\u00e9 Pierre et Marie Curie, 4, Place Jussieu, 75252, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bony", 
            "givenName": "Sandrine", 
            "id": "sg:person.013647160343.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire des Sciences du Climat et de l\u2019Environnement (LSCE-IPSL), CEA/CNRS/UVSQ, Orme des Merisiers, 91191, Gif-sur-Yvette Cedex, France", 
              "id": "http://www.grid.ac/institutes/grid.457340.1", 
              "name": [
                "Laboratoire des Sciences du Climat et de l\u2019Environnement (LSCE-IPSL), CEA/CNRS/UVSQ, Orme des Merisiers, 91191, Gif-sur-Yvette Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Braconnot", 
            "givenName": "Pascale", 
            "id": "sg:person.014515414211.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014515414211.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00382-010-0977-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021861148", 
              "https://doi.org/10.1007/s00382-010-0977-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-014-1209-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014440590", 
              "https://doi.org/10.1007/s10584-014-1209-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo1744", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030821405", 
              "https://doi.org/10.1038/ngeo1744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35012241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047779708", 
              "https://doi.org/10.1038/35012241"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2247", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009185086", 
              "https://doi.org/10.1038/ngeo2247"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-008-0446-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051631698", 
              "https://doi.org/10.1007/s00382-008-0446-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2223", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034144129", 
              "https://doi.org/10.1038/nclimate2223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-003-0369-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014795140", 
              "https://doi.org/10.1007/s00382-003-0369-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-009-0683-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039959203", 
              "https://doi.org/10.1007/s00382-009-0683-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-011-0156-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045851916", 
              "https://doi.org/10.1007/s10584-011-0156-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-011-1134-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013069436", 
              "https://doi.org/10.1007/s00382-011-1134-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0810-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001203373", 
              "https://doi.org/10.1007/s00382-010-0810-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-016-1659-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039544566", 
              "https://doi.org/10.1007/s10584-016-1659-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-007-0306-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002755636", 
              "https://doi.org/10.1007/s00382-007-0306-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12540", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033429957", 
              "https://doi.org/10.1038/nature12540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate2552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036483700", 
              "https://doi.org/10.1038/nclimate2552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031649031", 
              "https://doi.org/10.1038/nature06025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo1799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023320468", 
              "https://doi.org/10.1038/ngeo1799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10712-012-9213-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043911982", 
              "https://doi.org/10.1007/s10712-012-9213-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-10-26", 
        "datePublishedReg": "2015-10-26", 
        "description": "Precipitation projections are usually presented as the change in precipitation between a fixed current baseline and a particular time in the future. However, upcoming generations will be affected in a way probably more related to the moving trend in precipitation patterns, i.e. to the rate and the persistence of regional precipitation changes from one generation to the next, than to changes relative to a\n fixed current baseline. In this perspective, we propose an alternative characterization of the future precipitation changes predicted by general circulation models, focusing on the precipitation difference between two subsequent 20-year periods. We show that in a business-as-usual emission pathway, the moistening and drying rates increase by 30\u201340\u00a0%, both over land and ocean. As we move further over the twenty-first century, \nmore regions exhibit a significant rate of precipitation change, while the patterns become geographically stationary and the trends persistent. The stabilization of the geographical rate patterns that occurs despite the acceleration of global warming can be physically explained: it results from the increasing contribution of thermodynamic processes compared to dynamic processes in the control of precipitation change. We show that such an evolution is already noticeable over the last decades, and that it could be reversed if strong mitigation policies were quickly implemented. The combination of intensification and increasing persistence of precipitation rate patterns may affect the way human societies and natural ecosystems adapt to climate change, especially in the Mediterranean basin, in Central America, in South Asia and in the Arctic.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00382-015-2882-9", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1049631", 
            "issn": [
              "0930-7575", 
              "1432-0894"
            ], 
            "name": "Climate Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "47"
          }
        ], 
        "keywords": [
          "precipitation changes", 
          "climate change", 
          "future precipitation changes", 
          "regional precipitation changes", 
          "general circulation model", 
          "future climate change", 
          "combination of intensification", 
          "precipitation projections", 
          "circulation model", 
          "precipitation differences", 
          "precipitation patterns", 
          "current baseline", 
          "ways human societies", 
          "emission pathways", 
          "global warming", 
          "Mediterranean basin", 
          "thermodynamic processes", 
          "rate patterns", 
          "Central America", 
          "South Asia", 
          "natural ecosystems", 
          "twenty-first century", 
          "mitigation policies", 
          "intensification", 
          "human society", 
          "Ocean", 
          "basin", 
          "Arctic", 
          "warming", 
          "precipitation", 
          "dynamic process", 
          "patterns", 
          "more regions", 
          "ecosystems", 
          "changes", 
          "land", 
          "spatial stabilization", 
          "Asia", 
          "significant rate", 
          "America", 
          "evolution", 
          "projections", 
          "last decade", 
          "trends", 
          "region", 
          "particular time", 
          "century", 
          "persistence", 
          "period", 
          "process", 
          "contribution", 
          "decades", 
          "generation", 
          "rate", 
          "acceleration", 
          "model", 
          "future", 
          "time", 
          "persistent", 
          "combination", 
          "differences", 
          "stabilization", 
          "characterization", 
          "upcoming generation", 
          "pathway", 
          "perspective", 
          "control", 
          "way", 
          "baseline", 
          "society", 
          "alternative characterization", 
          "policy", 
          "business"
        ], 
        "name": "Spatial stabilization and intensification of moistening and drying rate patterns under future climate change", 
        "pagination": "951-965", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1051286153"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00382-015-2882-9"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00382-015-2882-9", 
          "https://app.dimensions.ai/details/publication/pub.1051286153"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_673.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00382-015-2882-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-015-2882-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-015-2882-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-015-2882-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-015-2882-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    230 TRIPLES      21 PREDICATES      116 URIs      89 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00382-015-2882-9 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 schema:author N6f42db1368154636bcc972c3dd63d65d
    4 schema:citation sg:pub.10.1007/s00382-003-0369-6
    5 sg:pub.10.1007/s00382-007-0306-1
    6 sg:pub.10.1007/s00382-008-0446-y
    7 sg:pub.10.1007/s00382-009-0683-8
    8 sg:pub.10.1007/s00382-010-0810-6
    9 sg:pub.10.1007/s00382-010-0977-x
    10 sg:pub.10.1007/s00382-011-1134-x
    11 sg:pub.10.1007/s10584-011-0156-z
    12 sg:pub.10.1007/s10584-014-1209-x
    13 sg:pub.10.1007/s10584-016-1659-4
    14 sg:pub.10.1007/s10712-012-9213-z
    15 sg:pub.10.1038/35012241
    16 sg:pub.10.1038/nature06025
    17 sg:pub.10.1038/nature12540
    18 sg:pub.10.1038/nclimate2223
    19 sg:pub.10.1038/nclimate2552
    20 sg:pub.10.1038/ngeo1744
    21 sg:pub.10.1038/ngeo1799
    22 sg:pub.10.1038/ngeo2247
    23 schema:datePublished 2015-10-26
    24 schema:datePublishedReg 2015-10-26
    25 schema:description Precipitation projections are usually presented as the change in precipitation between a fixed current baseline and a particular time in the future. However, upcoming generations will be affected in a way probably more related to the moving trend in precipitation patterns, i.e. to the rate and the persistence of regional precipitation changes from one generation to the next, than to changes relative to a fixed current baseline. In this perspective, we propose an alternative characterization of the future precipitation changes predicted by general circulation models, focusing on the precipitation difference between two subsequent 20-year periods. We show that in a business-as-usual emission pathway, the moistening and drying rates increase by 30–40 %, both over land and ocean. As we move further over the twenty-first century, more regions exhibit a significant rate of precipitation change, while the patterns become geographically stationary and the trends persistent. The stabilization of the geographical rate patterns that occurs despite the acceleration of global warming can be physically explained: it results from the increasing contribution of thermodynamic processes compared to dynamic processes in the control of precipitation change. We show that such an evolution is already noticeable over the last decades, and that it could be reversed if strong mitigation policies were quickly implemented. The combination of intensification and increasing persistence of precipitation rate patterns may affect the way human societies and natural ecosystems adapt to climate change, especially in the Mediterranean basin, in Central America, in South Asia and in the Arctic.
    26 schema:genre article
    27 schema:isAccessibleForFree false
    28 schema:isPartOf N169af09cf3254d6db3b761257b6ae4f3
    29 Nb44584f50b394eff81ba5b54d9cb17c6
    30 sg:journal.1049631
    31 schema:keywords America
    32 Arctic
    33 Asia
    34 Central America
    35 Mediterranean basin
    36 Ocean
    37 South Asia
    38 acceleration
    39 alternative characterization
    40 baseline
    41 basin
    42 business
    43 century
    44 changes
    45 characterization
    46 circulation model
    47 climate change
    48 combination
    49 combination of intensification
    50 contribution
    51 control
    52 current baseline
    53 decades
    54 differences
    55 dynamic process
    56 ecosystems
    57 emission pathways
    58 evolution
    59 future
    60 future climate change
    61 future precipitation changes
    62 general circulation model
    63 generation
    64 global warming
    65 human society
    66 intensification
    67 land
    68 last decade
    69 mitigation policies
    70 model
    71 more regions
    72 natural ecosystems
    73 particular time
    74 pathway
    75 patterns
    76 period
    77 persistence
    78 persistent
    79 perspective
    80 policy
    81 precipitation
    82 precipitation changes
    83 precipitation differences
    84 precipitation patterns
    85 precipitation projections
    86 process
    87 projections
    88 rate
    89 rate patterns
    90 region
    91 regional precipitation changes
    92 significant rate
    93 society
    94 spatial stabilization
    95 stabilization
    96 thermodynamic processes
    97 time
    98 trends
    99 twenty-first century
    100 upcoming generation
    101 warming
    102 way
    103 ways human societies
    104 schema:name Spatial stabilization and intensification of moistening and drying rate patterns under future climate change
    105 schema:pagination 951-965
    106 schema:productId N36b3114b050c4a4ba7885e516036b4a4
    107 Nf7244ec5c9694dafa7c28356b15fa090
    108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051286153
    109 https://doi.org/10.1007/s00382-015-2882-9
    110 schema:sdDatePublished 2022-11-24T21:00
    111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    112 schema:sdPublisher N949ddea201eb488aa607cce0c6cd2e5e
    113 schema:url https://doi.org/10.1007/s00382-015-2882-9
    114 sgo:license sg:explorer/license/
    115 sgo:sdDataset articles
    116 rdf:type schema:ScholarlyArticle
    117 N169af09cf3254d6db3b761257b6ae4f3 schema:issueNumber 3-4
    118 rdf:type schema:PublicationIssue
    119 N36b3114b050c4a4ba7885e516036b4a4 schema:name dimensions_id
    120 schema:value pub.1051286153
    121 rdf:type schema:PropertyValue
    122 N663fe5ec178546ecb6cf2b7a0d533367 rdf:first sg:person.014515414211.47
    123 rdf:rest rdf:nil
    124 N6f42db1368154636bcc972c3dd63d65d rdf:first sg:person.011072774037.39
    125 rdf:rest Nbf8950656af34fa5aecfc8a1d031ca49
    126 N949ddea201eb488aa607cce0c6cd2e5e schema:name Springer Nature - SN SciGraph project
    127 rdf:type schema:Organization
    128 Nb2c44cde65254cba8a29f11e160fb44a rdf:first sg:person.013647160343.22
    129 rdf:rest N663fe5ec178546ecb6cf2b7a0d533367
    130 Nb44584f50b394eff81ba5b54d9cb17c6 schema:volumeNumber 47
    131 rdf:type schema:PublicationVolume
    132 Nbf8950656af34fa5aecfc8a1d031ca49 rdf:first sg:person.010246040775.86
    133 rdf:rest Nb2c44cde65254cba8a29f11e160fb44a
    134 Nf7244ec5c9694dafa7c28356b15fa090 schema:name doi
    135 schema:value 10.1007/s00382-015-2882-9
    136 rdf:type schema:PropertyValue
    137 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Earth Sciences
    139 rdf:type schema:DefinedTerm
    140 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Atmospheric Sciences
    142 rdf:type schema:DefinedTerm
    143 sg:journal.1049631 schema:issn 0930-7575
    144 1432-0894
    145 schema:name Climate Dynamics
    146 schema:publisher Springer Nature
    147 rdf:type schema:Periodical
    148 sg:person.010246040775.86 schema:affiliation grid-institutes:grid.457340.1
    149 schema:familyName Joussaume
    150 schema:givenName Sylvie
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010246040775.86
    152 rdf:type schema:Person
    153 sg:person.011072774037.39 schema:affiliation grid-institutes:grid.457340.1
    154 schema:familyName Chavaillaz
    155 schema:givenName Yann
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011072774037.39
    157 rdf:type schema:Person
    158 sg:person.013647160343.22 schema:affiliation grid-institutes:grid.463916.f
    159 schema:familyName Bony
    160 schema:givenName Sandrine
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22
    162 rdf:type schema:Person
    163 sg:person.014515414211.47 schema:affiliation grid-institutes:grid.457340.1
    164 schema:familyName Braconnot
    165 schema:givenName Pascale
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014515414211.47
    167 rdf:type schema:Person
    168 sg:pub.10.1007/s00382-003-0369-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014795140
    169 https://doi.org/10.1007/s00382-003-0369-6
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s00382-007-0306-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002755636
    172 https://doi.org/10.1007/s00382-007-0306-1
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s00382-008-0446-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1051631698
    175 https://doi.org/10.1007/s00382-008-0446-y
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s00382-009-0683-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039959203
    178 https://doi.org/10.1007/s00382-009-0683-8
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s00382-010-0810-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001203373
    181 https://doi.org/10.1007/s00382-010-0810-6
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s00382-010-0977-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021861148
    184 https://doi.org/10.1007/s00382-010-0977-x
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s00382-011-1134-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013069436
    187 https://doi.org/10.1007/s00382-011-1134-x
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s10584-011-0156-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1045851916
    190 https://doi.org/10.1007/s10584-011-0156-z
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s10584-014-1209-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014440590
    193 https://doi.org/10.1007/s10584-014-1209-x
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s10584-016-1659-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039544566
    196 https://doi.org/10.1007/s10584-016-1659-4
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s10712-012-9213-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1043911982
    199 https://doi.org/10.1007/s10712-012-9213-z
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/35012241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047779708
    202 https://doi.org/10.1038/35012241
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/nature06025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031649031
    205 https://doi.org/10.1038/nature06025
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nature12540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033429957
    208 https://doi.org/10.1038/nature12540
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/nclimate2223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034144129
    211 https://doi.org/10.1038/nclimate2223
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/nclimate2552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036483700
    214 https://doi.org/10.1038/nclimate2552
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/ngeo1744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030821405
    217 https://doi.org/10.1038/ngeo1744
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/ngeo1799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023320468
    220 https://doi.org/10.1038/ngeo1799
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/ngeo2247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009185086
    223 https://doi.org/10.1038/ngeo2247
    224 rdf:type schema:CreativeWork
    225 grid-institutes:grid.457340.1 schema:alternateName Laboratoire des Sciences du Climat et de l’Environnement (LSCE-IPSL), CEA/CNRS/UVSQ, Orme des Merisiers, 91191, Gif-sur-Yvette Cedex, France
    226 schema:name Laboratoire des Sciences du Climat et de l’Environnement (LSCE-IPSL), CEA/CNRS/UVSQ, Orme des Merisiers, 91191, Gif-sur-Yvette Cedex, France
    227 rdf:type schema:Organization
    228 grid-institutes:grid.463916.f schema:alternateName Laboratoire de Météorologie Dynamique (LMD-IPSL), CNRS/Université Pierre et Marie Curie, 4, Place Jussieu, 75252, Paris, France
    229 schema:name Laboratoire de Météorologie Dynamique (LMD-IPSL), CNRS/Université Pierre et Marie Curie, 4, Place Jussieu, 75252, Paris, France
    230 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...