Shallowness of tropical low clouds as a predictor of climate models’ response to warming View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-10-05

AUTHORS

Florent Brient, Tapio Schneider, Zhihong Tan, Sandrine Bony, Xin Qu, Alex Hall

ABSTRACT

How tropical low clouds change with climate remains the dominant source of uncertainty in global warming projections. An analysis of an ensemble of CMIP5 climate models reveals that a significant part of the spread in the models’ climate sensitivity can be accounted by differences in the climatological shallowness of tropical low clouds in weak-subsidence regimes: models with shallower low clouds in weak-subsidence regimes tend to have a higher climate sensitivity than models with deeper low clouds. The dynamical mechanisms responsible for the model differences are analyzed. Competing effects of parameterized boundary-layer turbulence and shallow convection are found to be essential. Boundary-layer turbulence and shallow convection are typically represented by distinct parameterization schemes in current models—parameterization schemes that often produce opposing effects on low clouds. Convective drying of the boundary layer tends to deepen low clouds and reduce the cloud fraction at the lowest levels; turbulent moistening tends to make low clouds more shallow but affects the low-cloud fraction less. The relative importance different models assign to these opposing mechanisms contributes to the spread of the climatological shallowness of low clouds and thus to the spread of low-cloud changes under global warming. More... »

PAGES

433-449

References to SciGraph publications

  • 1991-03. Sensitivity of an atmospheric general circulation model to prescribed SST changes: feedback effects associated with the simulation of cloud optical properties in CLIMATE DYNAMICS
  • 2008-11-20. A PDF-based hybrid prognostic cloud scheme for general circulation models in CLIMATE DYNAMICS
  • 2004-01-27. On dynamic and thermodynamic components of cloud changes in CLIMATE DYNAMICS
  • 2012-01-15. Interpretation of the positive low-cloud feedback predicted by a climate model under global warming in CLIMATE DYNAMICS
  • 2012-04-28. LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection in CLIMATE DYNAMICS
  • 1993. Efficient Cumulus Parameterization for Long-Term Climate Studies: The GISS Scheme in THE REPRESENTATION OF CUMULUS CONVECTION IN NUMERICAL MODELS
  • 1993. A Cumulus Representation Based on the Episodic Mixing Model: The Importance of Mixing and Microphysics in Predicting Humidity in THE REPRESENTATION OF CUMULUS CONVECTION IN NUMERICAL MODELS
  • 1993-05. Climate change and the regulation of the surface moisture and energy budgets in CLIMATE DYNAMICS
  • 1979-09. A parametric model of vertical eddy fluxes in the atmosphere in BOUNDARY-LAYER METEOROLOGY
  • 2005-10-15. The role of shallow convection in the water and energy cycles of the atmosphere in CLIMATE DYNAMICS
  • 2002-09. The hydrologic cycle in deep-time climate problems in NATURE
  • 2014-01-01. Spread in model climate sensitivity traced to atmospheric convective mixing in NATURE
  • 2012-10-12. Tropospheric adjustment to increasing CO2: its timescale and the role of land–sea contrast in CLIMATE DYNAMICS
  • 2012-12-21. Resolved Versus Parametrized Boundary-Layer Plumes. Part III: Derivation of a Statistical Scheme for Cumulus Clouds in BOUNDARY-LAYER METEOROLOGY
  • 2013-03-23. On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates in CLIMATE DYNAMICS
  • 2012-12-11. Coupling between subtropical cloud feedback and the local hydrological cycle in a climate model in CLIMATE DYNAMICS
  • 2008-12-02. The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day climate in CLIMATE DYNAMICS
  • 2006-02-04. On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles in CLIMATE DYNAMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00382-015-2846-0

    DOI

    http://dx.doi.org/10.1007/s00382-015-2846-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1036271246


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Earth Sciences, ETH Zurich, Zurich, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5801.c", 
              "name": [
                "Department of Earth Sciences, ETH Zurich, Zurich, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brient", 
            "givenName": "Florent", 
            "id": "sg:person.013532720253.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013532720253.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "California Institute of Technology, Pasadena, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.20861.3d", 
              "name": [
                "Department of Earth Sciences, ETH Zurich, Zurich, Switzerland", 
                "California Institute of Technology, Pasadena, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schneider", 
            "givenName": "Tapio", 
            "id": "sg:person.0776117602.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776117602.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "California Institute of Technology, Pasadena, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.20861.3d", 
              "name": [
                "Department of Earth Sciences, ETH Zurich, Zurich, Switzerland", 
                "California Institute of Technology, Pasadena, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tan", 
            "givenName": "Zhihong", 
            "id": "sg:person.010132441667.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010132441667.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique (LMD/IPSL), Universit\u00e9 Pierre et Marie Curie, CNRS, Paris, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Laboratoire de M\u00e9t\u00e9orologie Dynamique (LMD/IPSL), Universit\u00e9 Pierre et Marie Curie, CNRS, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bony", 
            "givenName": "Sandrine", 
            "id": "sg:person.013647160343.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Atmospheric and Oceanic Sciences, University of California, PO Box 951565, 90095-1565, Los Angeles, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.19006.3e", 
              "name": [
                "Department of Atmospheric and Oceanic Sciences, University of California, PO Box 951565, 90095-1565, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Qu", 
            "givenName": "Xin", 
            "id": "sg:person.013606745337.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013606745337.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Atmospheric and Oceanic Sciences, University of California, PO Box 951565, 90095-1565, Los Angeles, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.19006.3e", 
              "name": [
                "Department of Atmospheric and Oceanic Sciences, University of California, PO Box 951565, 90095-1565, Los Angeles, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hall", 
            "givenName": "Alex", 
            "id": "sg:person.07742313157.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07742313157.15"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature12829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016927016", 
              "https://doi.org/10.1038/nature12829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00117978", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013264681", 
              "https://doi.org/10.1007/bf00117978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-008-0487-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045325006", 
              "https://doi.org/10.1007/s00382-008-0487-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature01088", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032974904", 
              "https://doi.org/10.1038/nature01088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00251808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042853097", 
              "https://doi.org/10.1007/bf00251808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00198617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020911415", 
              "https://doi.org/10.1007/bf00198617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-935704-13-3_19", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009623641", 
              "https://doi.org/10.1007/978-1-935704-13-3_19"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-006-0111-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021690503", 
              "https://doi.org/10.1007/s00382-006-0111-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-935704-13-3_18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046544367", 
              "https://doi.org/10.1007/978-1-935704-13-3_18"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-012-1343-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046475038", 
              "https://doi.org/10.1007/s00382-012-1343-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-003-0369-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014795140", 
              "https://doi.org/10.1007/s00382-003-0369-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10546-012-9789-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034564764", 
              "https://doi.org/10.1007/s10546-012-9789-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-013-1725-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028387493", 
              "https://doi.org/10.1007/s00382-013-1725-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-012-1608-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025483451", 
              "https://doi.org/10.1007/s00382-012-1608-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-012-1555-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018693226", 
              "https://doi.org/10.1007/s00382-012-1555-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-005-0051-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012110103", 
              "https://doi.org/10.1007/s00382-005-0051-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-008-0489-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000337495", 
              "https://doi.org/10.1007/s00382-008-0489-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-011-1279-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031005835", 
              "https://doi.org/10.1007/s00382-011-1279-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-10-05", 
        "datePublishedReg": "2015-10-05", 
        "description": "How tropical low clouds change with climate remains the dominant source of uncertainty in global warming projections. An analysis of an ensemble of CMIP5 climate models reveals that a significant part of the spread in the models\u2019 climate sensitivity can be accounted by differences in the climatological shallowness of tropical low clouds in weak-subsidence regimes: models with shallower low clouds in weak-subsidence regimes tend to have a higher climate sensitivity than models with deeper low clouds. The dynamical mechanisms responsible for the model differences are analyzed. Competing effects of parameterized boundary-layer turbulence and shallow convection are found to be essential. Boundary-layer turbulence and shallow convection are typically represented by distinct parameterization schemes in current models\u2014parameterization schemes that often produce opposing effects on low clouds. Convective drying of the boundary layer tends to deepen low clouds and reduce the cloud fraction at the lowest levels; turbulent moistening tends to make low clouds more shallow but affects the low-cloud fraction less. The relative importance different models assign to these opposing mechanisms contributes to the spread of the climatological shallowness of low clouds and thus to the spread of low-cloud changes under global warming.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00382-015-2846-0", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1049631", 
            "issn": [
              "0930-7575", 
              "1432-0894"
            ], 
            "name": "Climate Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "47"
          }
        ], 
        "keywords": [
          "tropical low clouds", 
          "low clouds", 
          "boundary layer turbulence", 
          "climate models", 
          "climate sensitivity", 
          "shallow convection", 
          "low cloud changes", 
          "CMIP5 climate models", 
          "global warming projections", 
          "low cloud fraction", 
          "high climate sensitivity", 
          "model parameterization schemes", 
          "cloud fraction", 
          "parameterization schemes", 
          "model differences", 
          "dominant source", 
          "global warming", 
          "boundary layer", 
          "dynamical mechanism", 
          "shallowness", 
          "cloud", 
          "convection", 
          "significant part", 
          "warming", 
          "shallow", 
          "climate", 
          "regime", 
          "turbulence", 
          "ensemble", 
          "different models", 
          "projections", 
          "uncertainty", 
          "model", 
          "turbulent", 
          "fraction", 
          "source", 
          "layer", 
          "part", 
          "changes", 
          "drying", 
          "spread", 
          "mechanisms contributes", 
          "differences", 
          "sensitivity", 
          "scheme", 
          "low levels", 
          "analysis", 
          "effect", 
          "response", 
          "contributes", 
          "levels", 
          "mechanism", 
          "predictors", 
          "convective drying"
        ], 
        "name": "Shallowness of tropical low clouds as a predictor of climate models\u2019 response to warming", 
        "pagination": "433-449", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1036271246"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00382-015-2846-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00382-015-2846-0", 
          "https://app.dimensions.ai/details/publication/pub.1036271246"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_657.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00382-015-2846-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-015-2846-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-015-2846-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-015-2846-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-015-2846-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    228 TRIPLES      21 PREDICATES      96 URIs      70 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00382-015-2846-0 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 schema:author N9f524cc3b59c434facc4ff3c56c54055
    4 schema:citation sg:pub.10.1007/978-1-935704-13-3_18
    5 sg:pub.10.1007/978-1-935704-13-3_19
    6 sg:pub.10.1007/bf00117978
    7 sg:pub.10.1007/bf00198617
    8 sg:pub.10.1007/bf00251808
    9 sg:pub.10.1007/s00382-003-0369-6
    10 sg:pub.10.1007/s00382-005-0051-2
    11 sg:pub.10.1007/s00382-006-0111-2
    12 sg:pub.10.1007/s00382-008-0487-2
    13 sg:pub.10.1007/s00382-008-0489-0
    14 sg:pub.10.1007/s00382-011-1279-7
    15 sg:pub.10.1007/s00382-012-1343-y
    16 sg:pub.10.1007/s00382-012-1555-1
    17 sg:pub.10.1007/s00382-012-1608-5
    18 sg:pub.10.1007/s00382-013-1725-9
    19 sg:pub.10.1007/s10546-012-9789-3
    20 sg:pub.10.1038/nature01088
    21 sg:pub.10.1038/nature12829
    22 schema:datePublished 2015-10-05
    23 schema:datePublishedReg 2015-10-05
    24 schema:description How tropical low clouds change with climate remains the dominant source of uncertainty in global warming projections. An analysis of an ensemble of CMIP5 climate models reveals that a significant part of the spread in the models’ climate sensitivity can be accounted by differences in the climatological shallowness of tropical low clouds in weak-subsidence regimes: models with shallower low clouds in weak-subsidence regimes tend to have a higher climate sensitivity than models with deeper low clouds. The dynamical mechanisms responsible for the model differences are analyzed. Competing effects of parameterized boundary-layer turbulence and shallow convection are found to be essential. Boundary-layer turbulence and shallow convection are typically represented by distinct parameterization schemes in current models—parameterization schemes that often produce opposing effects on low clouds. Convective drying of the boundary layer tends to deepen low clouds and reduce the cloud fraction at the lowest levels; turbulent moistening tends to make low clouds more shallow but affects the low-cloud fraction less. The relative importance different models assign to these opposing mechanisms contributes to the spread of the climatological shallowness of low clouds and thus to the spread of low-cloud changes under global warming.
    25 schema:genre article
    26 schema:isAccessibleForFree false
    27 schema:isPartOf N7e37aaeba9414ad1a4d2516fb73625b3
    28 Nec7658eef8d749df8819232e802bd485
    29 sg:journal.1049631
    30 schema:keywords CMIP5 climate models
    31 analysis
    32 boundary layer
    33 boundary layer turbulence
    34 changes
    35 climate
    36 climate models
    37 climate sensitivity
    38 cloud
    39 cloud fraction
    40 contributes
    41 convection
    42 convective drying
    43 differences
    44 different models
    45 dominant source
    46 drying
    47 dynamical mechanism
    48 effect
    49 ensemble
    50 fraction
    51 global warming
    52 global warming projections
    53 high climate sensitivity
    54 layer
    55 levels
    56 low cloud changes
    57 low cloud fraction
    58 low clouds
    59 low levels
    60 mechanism
    61 mechanisms contributes
    62 model
    63 model differences
    64 model parameterization schemes
    65 parameterization schemes
    66 part
    67 predictors
    68 projections
    69 regime
    70 response
    71 scheme
    72 sensitivity
    73 shallow
    74 shallow convection
    75 shallowness
    76 significant part
    77 source
    78 spread
    79 tropical low clouds
    80 turbulence
    81 turbulent
    82 uncertainty
    83 warming
    84 schema:name Shallowness of tropical low clouds as a predictor of climate models’ response to warming
    85 schema:pagination 433-449
    86 schema:productId N6af8efb5793442edbc6a9a68bc7d530f
    87 N8d6fa08984f941868d141a774640a6c5
    88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036271246
    89 https://doi.org/10.1007/s00382-015-2846-0
    90 schema:sdDatePublished 2022-12-01T06:33
    91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    92 schema:sdPublisher Na711e83ebf3148bb8ea4a993720eb1a8
    93 schema:url https://doi.org/10.1007/s00382-015-2846-0
    94 sgo:license sg:explorer/license/
    95 sgo:sdDataset articles
    96 rdf:type schema:ScholarlyArticle
    97 N1bcdcfb6aee848f58a496ec05f39e3ed rdf:first sg:person.010132441667.70
    98 rdf:rest N74d90d3200164f98a7289abf527016ba
    99 N6af8efb5793442edbc6a9a68bc7d530f schema:name dimensions_id
    100 schema:value pub.1036271246
    101 rdf:type schema:PropertyValue
    102 N74d90d3200164f98a7289abf527016ba rdf:first sg:person.013647160343.22
    103 rdf:rest N86ce08f2b7674f6587231a2402e4dc80
    104 N7e37aaeba9414ad1a4d2516fb73625b3 schema:issueNumber 1-2
    105 rdf:type schema:PublicationIssue
    106 N86ce08f2b7674f6587231a2402e4dc80 rdf:first sg:person.013606745337.16
    107 rdf:rest Ncfa64ae54873470a9eb6e2924d056066
    108 N8d6fa08984f941868d141a774640a6c5 schema:name doi
    109 schema:value 10.1007/s00382-015-2846-0
    110 rdf:type schema:PropertyValue
    111 N9f524cc3b59c434facc4ff3c56c54055 rdf:first sg:person.013532720253.39
    112 rdf:rest Na163d164219b46a88325b1a213948ba2
    113 Na163d164219b46a88325b1a213948ba2 rdf:first sg:person.0776117602.31
    114 rdf:rest N1bcdcfb6aee848f58a496ec05f39e3ed
    115 Na711e83ebf3148bb8ea4a993720eb1a8 schema:name Springer Nature - SN SciGraph project
    116 rdf:type schema:Organization
    117 Ncfa64ae54873470a9eb6e2924d056066 rdf:first sg:person.07742313157.15
    118 rdf:rest rdf:nil
    119 Nec7658eef8d749df8819232e802bd485 schema:volumeNumber 47
    120 rdf:type schema:PublicationVolume
    121 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Earth Sciences
    123 rdf:type schema:DefinedTerm
    124 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Atmospheric Sciences
    126 rdf:type schema:DefinedTerm
    127 sg:journal.1049631 schema:issn 0930-7575
    128 1432-0894
    129 schema:name Climate Dynamics
    130 schema:publisher Springer Nature
    131 rdf:type schema:Periodical
    132 sg:person.010132441667.70 schema:affiliation grid-institutes:grid.20861.3d
    133 schema:familyName Tan
    134 schema:givenName Zhihong
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010132441667.70
    136 rdf:type schema:Person
    137 sg:person.013532720253.39 schema:affiliation grid-institutes:grid.5801.c
    138 schema:familyName Brient
    139 schema:givenName Florent
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013532720253.39
    141 rdf:type schema:Person
    142 sg:person.013606745337.16 schema:affiliation grid-institutes:grid.19006.3e
    143 schema:familyName Qu
    144 schema:givenName Xin
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013606745337.16
    146 rdf:type schema:Person
    147 sg:person.013647160343.22 schema:affiliation grid-institutes:None
    148 schema:familyName Bony
    149 schema:givenName Sandrine
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22
    151 rdf:type schema:Person
    152 sg:person.07742313157.15 schema:affiliation grid-institutes:grid.19006.3e
    153 schema:familyName Hall
    154 schema:givenName Alex
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07742313157.15
    156 rdf:type schema:Person
    157 sg:person.0776117602.31 schema:affiliation grid-institutes:grid.20861.3d
    158 schema:familyName Schneider
    159 schema:givenName Tapio
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776117602.31
    161 rdf:type schema:Person
    162 sg:pub.10.1007/978-1-935704-13-3_18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046544367
    163 https://doi.org/10.1007/978-1-935704-13-3_18
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/978-1-935704-13-3_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009623641
    166 https://doi.org/10.1007/978-1-935704-13-3_19
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/bf00117978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013264681
    169 https://doi.org/10.1007/bf00117978
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/bf00198617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020911415
    172 https://doi.org/10.1007/bf00198617
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/bf00251808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042853097
    175 https://doi.org/10.1007/bf00251808
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s00382-003-0369-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014795140
    178 https://doi.org/10.1007/s00382-003-0369-6
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s00382-005-0051-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012110103
    181 https://doi.org/10.1007/s00382-005-0051-2
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s00382-006-0111-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021690503
    184 https://doi.org/10.1007/s00382-006-0111-2
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s00382-008-0487-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045325006
    187 https://doi.org/10.1007/s00382-008-0487-2
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s00382-008-0489-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000337495
    190 https://doi.org/10.1007/s00382-008-0489-0
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s00382-011-1279-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031005835
    193 https://doi.org/10.1007/s00382-011-1279-7
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s00382-012-1343-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1046475038
    196 https://doi.org/10.1007/s00382-012-1343-y
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s00382-012-1555-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018693226
    199 https://doi.org/10.1007/s00382-012-1555-1
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s00382-012-1608-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025483451
    202 https://doi.org/10.1007/s00382-012-1608-5
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s00382-013-1725-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028387493
    205 https://doi.org/10.1007/s00382-013-1725-9
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s10546-012-9789-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034564764
    208 https://doi.org/10.1007/s10546-012-9789-3
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/nature01088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032974904
    211 https://doi.org/10.1038/nature01088
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/nature12829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016927016
    214 https://doi.org/10.1038/nature12829
    215 rdf:type schema:CreativeWork
    216 grid-institutes:None schema:alternateName Laboratoire de Météorologie Dynamique (LMD/IPSL), Université Pierre et Marie Curie, CNRS, Paris, France
    217 schema:name Laboratoire de Météorologie Dynamique (LMD/IPSL), Université Pierre et Marie Curie, CNRS, Paris, France
    218 rdf:type schema:Organization
    219 grid-institutes:grid.19006.3e schema:alternateName Department of Atmospheric and Oceanic Sciences, University of California, PO Box 951565, 90095-1565, Los Angeles, CA, USA
    220 schema:name Department of Atmospheric and Oceanic Sciences, University of California, PO Box 951565, 90095-1565, Los Angeles, CA, USA
    221 rdf:type schema:Organization
    222 grid-institutes:grid.20861.3d schema:alternateName California Institute of Technology, Pasadena, CA, USA
    223 schema:name California Institute of Technology, Pasadena, CA, USA
    224 Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
    225 rdf:type schema:Organization
    226 grid-institutes:grid.5801.c schema:alternateName Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
    227 schema:name Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
    228 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...