On trend estimation and significance testing for non-Gaussian and serially dependent data: quantifying the urbanization effect on trends in hot ... View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-07

AUTHORS

Cheng Qian

ABSTRACT

Quantifying the urbanization effect on trends in climate extremes is important both for detection and attribution studies and for human adaptation; however, a fundamental problem is how to accurately estimate a trend and its statistical significance, especially for non-Gaussian and serially dependent data. In this paper, the choice of trend estimation and significance testing method is suggested as important for these kinds of studies, as illustrated by quantifying the urbanization effect on trends in seven hot-extreme indices for the megacity of Shanghai during 1961–2013. Both linear and nonlinear trend estimation methods were used. The trends and corresponding statistical significances were estimated by taking into account potential non-Gaussian and serial dependence in the extreme indices. A new method based on adaptive surrogate data is proposed to test the statistical significance of the ensemble empirical mode decomposition (EEMD) nonlinear trend. The urbanization contribution was found to be approximately 34 % (43 %) for the trend in the non-Gaussian distributed heat wave index based on nonparametric linear trend (EEMD nonlinear trend) estimation. For some of the other six hot-extreme indices analyzed, the urbanization contributions estimated based on linear and nonlinear trends varied greatly, with as much as a twofold difference between them. For the linear trend estimation itself, the ordinary least squares fit can give a substantially biased estimation of the urbanization contribution for some of the non-Gaussian extreme indices. More... »

PAGES

329-344

Journal

TITLE

Climate Dynamics

ISSUE

1-2

VOLUME

47

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-015-2838-0

DOI

http://dx.doi.org/10.1007/s00382-015-2838-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050416648


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Atmospheric Physics", 
          "id": "https://www.grid.ac/institutes/grid.424023.3", 
          "name": [
            "Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, P. O. Box 9804, 100029, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qian", 
        "givenName": "Cheng", 
        "id": "sg:person.016005320351.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016005320351.69"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/2010jd015452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002846916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-011-1128-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004620896", 
          "https://doi.org/10.1007/s00382-011-1128-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007729816", 
          "https://doi.org/10.1038/nclimate2410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07055900.2000.9649654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011493546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006gl027927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012770867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jamc-d-14-0295.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014567248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2001)014<2204:coewhi>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016324966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2007jcli1348.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016826134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3724/sp.j.1248.2014.066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019257764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2010jcli3654.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020348609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.1756", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023067352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wcc.34", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023707290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.1989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026621179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.1989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026621179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jgrd.50150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026916074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-007-0368-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028237482", 
          "https://doi.org/10.1007/s00704-007-0368-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-007-0368-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028237482", 
          "https://doi.org/10.1007/s00704-007-0368-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-10-05012.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029387662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jam2504.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029718107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2003gl018004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030337072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007rg000228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030493926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2789(00)00043-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033341451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034144129", 
          "https://doi.org/10.1038/nclimate2223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-13-00393.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034181783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0701020104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036261477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009gl038617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037101579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009gl038617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037101579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(92)90102-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037635069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(92)90102-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037635069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11769-012-0515-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037922190", 
          "https://doi.org/10.1007/s11769-012-0515-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2010jcli3908.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040455575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-14-00159.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041414386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11430-014-4945-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042416069", 
          "https://doi.org/10.1007/s11430-014-4945-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3366.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045132887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045449821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045449821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.1998.0193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048418364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00376-009-9085-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049248542", 
          "https://doi.org/10.1007/s00376-009-9085-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00376-009-9085-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049248542", 
          "https://doi.org/10.1007/s00376-009-9085-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-13-00235.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051542142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1968.10480934", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058300261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s1793536909000047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063022921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-11-00293.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063454917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/cr01053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071158853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3354/cr027119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071159614"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07", 
    "datePublishedReg": "2016-07-01", 
    "description": "Quantifying the urbanization effect on trends in climate extremes is important both for detection and attribution studies and for human adaptation; however, a fundamental problem is how to accurately estimate a trend and its statistical significance, especially for non-Gaussian and serially dependent data. In this paper, the choice of trend estimation and significance testing method is suggested as important for these kinds of studies, as illustrated by quantifying the urbanization effect on trends in seven hot-extreme indices for the megacity of Shanghai during 1961\u20132013. Both linear and nonlinear trend estimation methods were used. The trends and corresponding statistical significances were estimated by taking into account potential non-Gaussian and serial dependence in the extreme indices. A new method based on adaptive surrogate data is proposed to test the statistical significance of the ensemble empirical mode decomposition (EEMD) nonlinear trend. The urbanization contribution was found to be approximately 34 % (43 %) for the trend in the non-Gaussian distributed heat wave index based on nonparametric linear trend (EEMD nonlinear trend) estimation. For some of the other six hot-extreme indices analyzed, the urbanization contributions estimated based on linear and nonlinear trends varied greatly, with as much as a twofold difference between them. For the linear trend estimation itself, the ordinary least squares fit can give a substantially biased estimation of the urbanization contribution for some of the non-Gaussian extreme indices.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00382-015-2838-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "On trend estimation and significance testing for non-Gaussian and serially dependent data: quantifying the urbanization effect on trends in hot extremes in the megacity of Shanghai", 
    "pagination": "329-344", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f02b32af4faf672b11212739602ceafd32f6e1f56eb56e8ac4c5c8166904042a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-015-2838-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050416648"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-015-2838-0", 
      "https://app.dimensions.ai/details/publication/pub.1050416648"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88248_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00382-015-2838-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-015-2838-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-015-2838-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-015-2838-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-015-2838-0'


 

This table displays all metadata directly associated to this object as RDF triples.

185 TRIPLES      21 PREDICATES      66 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-015-2838-0 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N238a02a793be41d9ad94d911bc72e647
4 schema:citation sg:pub.10.1007/s00376-009-9085-4
5 sg:pub.10.1007/s00382-011-1128-8
6 sg:pub.10.1007/s00704-007-0368-3
7 sg:pub.10.1007/s11430-014-4945-x
8 sg:pub.10.1007/s11769-012-0515-3
9 sg:pub.10.1038/nclimate2223
10 sg:pub.10.1038/nclimate2410
11 https://doi.org/10.1002/jgrd.50150
12 https://doi.org/10.1002/joc.1756
13 https://doi.org/10.1002/joc.1989
14 https://doi.org/10.1002/wcc.34
15 https://doi.org/10.1016/0167-2789(92)90102-s
16 https://doi.org/10.1016/s0167-2789(00)00043-9
17 https://doi.org/10.1029/2003gl018004
18 https://doi.org/10.1029/2006gl027927
19 https://doi.org/10.1029/2007rg000228
20 https://doi.org/10.1029/2009gl038617
21 https://doi.org/10.1029/2010jd015452
22 https://doi.org/10.1073/pnas.0701020104
23 https://doi.org/10.1080/01621459.1968.10480934
24 https://doi.org/10.1080/07055900.2000.9649654
25 https://doi.org/10.1098/rspa.1998.0193
26 https://doi.org/10.1103/physrevlett.77.635
27 https://doi.org/10.1142/s1793536909000047
28 https://doi.org/10.1175/1520-0442(2001)014<2204:coewhi>2.0.co;2
29 https://doi.org/10.1175/2007jcli1348.1
30 https://doi.org/10.1175/2010jcli3654.1
31 https://doi.org/10.1175/2010jcli3908.1
32 https://doi.org/10.1175/jam2504.1
33 https://doi.org/10.1175/jamc-d-14-0295.1
34 https://doi.org/10.1175/jcli-d-10-05012.1
35 https://doi.org/10.1175/jcli-d-11-00293.1
36 https://doi.org/10.1175/jcli-d-13-00235.1
37 https://doi.org/10.1175/jcli-d-13-00393.1
38 https://doi.org/10.1175/jcli-d-14-00159.1
39 https://doi.org/10.1175/jcli3366.1
40 https://doi.org/10.3354/cr01053
41 https://doi.org/10.3354/cr027119
42 https://doi.org/10.3724/sp.j.1248.2014.066
43 schema:datePublished 2016-07
44 schema:datePublishedReg 2016-07-01
45 schema:description Quantifying the urbanization effect on trends in climate extremes is important both for detection and attribution studies and for human adaptation; however, a fundamental problem is how to accurately estimate a trend and its statistical significance, especially for non-Gaussian and serially dependent data. In this paper, the choice of trend estimation and significance testing method is suggested as important for these kinds of studies, as illustrated by quantifying the urbanization effect on trends in seven hot-extreme indices for the megacity of Shanghai during 1961–2013. Both linear and nonlinear trend estimation methods were used. The trends and corresponding statistical significances were estimated by taking into account potential non-Gaussian and serial dependence in the extreme indices. A new method based on adaptive surrogate data is proposed to test the statistical significance of the ensemble empirical mode decomposition (EEMD) nonlinear trend. The urbanization contribution was found to be approximately 34 % (43 %) for the trend in the non-Gaussian distributed heat wave index based on nonparametric linear trend (EEMD nonlinear trend) estimation. For some of the other six hot-extreme indices analyzed, the urbanization contributions estimated based on linear and nonlinear trends varied greatly, with as much as a twofold difference between them. For the linear trend estimation itself, the ordinary least squares fit can give a substantially biased estimation of the urbanization contribution for some of the non-Gaussian extreme indices.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N485428b285dd45a0aff86c3233638c4f
50 Necf4bcfb4a4f4a1f989a2a11eeaa3ebf
51 sg:journal.1049631
52 schema:name On trend estimation and significance testing for non-Gaussian and serially dependent data: quantifying the urbanization effect on trends in hot extremes in the megacity of Shanghai
53 schema:pagination 329-344
54 schema:productId N331f610125484ef49f83d2070f8e1fa2
55 N66b36cebea704a6ea0c96ad1075070f1
56 Nff214039a1eb48edb1d6441edd0d0f82
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050416648
58 https://doi.org/10.1007/s00382-015-2838-0
59 schema:sdDatePublished 2019-04-11T13:10
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Nb4e8ccdc259641cca6d3429f55c73942
62 schema:url http://link.springer.com/10.1007%2Fs00382-015-2838-0
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N238a02a793be41d9ad94d911bc72e647 rdf:first sg:person.016005320351.69
67 rdf:rest rdf:nil
68 N331f610125484ef49f83d2070f8e1fa2 schema:name doi
69 schema:value 10.1007/s00382-015-2838-0
70 rdf:type schema:PropertyValue
71 N485428b285dd45a0aff86c3233638c4f schema:volumeNumber 47
72 rdf:type schema:PublicationVolume
73 N66b36cebea704a6ea0c96ad1075070f1 schema:name readcube_id
74 schema:value f02b32af4faf672b11212739602ceafd32f6e1f56eb56e8ac4c5c8166904042a
75 rdf:type schema:PropertyValue
76 Nb4e8ccdc259641cca6d3429f55c73942 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Necf4bcfb4a4f4a1f989a2a11eeaa3ebf schema:issueNumber 1-2
79 rdf:type schema:PublicationIssue
80 Nff214039a1eb48edb1d6441edd0d0f82 schema:name dimensions_id
81 schema:value pub.1050416648
82 rdf:type schema:PropertyValue
83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
84 schema:name Mathematical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
87 schema:name Statistics
88 rdf:type schema:DefinedTerm
89 sg:journal.1049631 schema:issn 0930-7575
90 1432-0894
91 schema:name Climate Dynamics
92 rdf:type schema:Periodical
93 sg:person.016005320351.69 schema:affiliation https://www.grid.ac/institutes/grid.424023.3
94 schema:familyName Qian
95 schema:givenName Cheng
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016005320351.69
97 rdf:type schema:Person
98 sg:pub.10.1007/s00376-009-9085-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049248542
99 https://doi.org/10.1007/s00376-009-9085-4
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s00382-011-1128-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004620896
102 https://doi.org/10.1007/s00382-011-1128-8
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s00704-007-0368-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028237482
105 https://doi.org/10.1007/s00704-007-0368-3
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s11430-014-4945-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042416069
108 https://doi.org/10.1007/s11430-014-4945-x
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s11769-012-0515-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037922190
111 https://doi.org/10.1007/s11769-012-0515-3
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/nclimate2223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034144129
114 https://doi.org/10.1038/nclimate2223
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/nclimate2410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007729816
117 https://doi.org/10.1038/nclimate2410
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/jgrd.50150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026916074
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/joc.1756 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023067352
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1002/joc.1989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026621179
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1002/wcc.34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023707290
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0167-2789(92)90102-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1037635069
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/s0167-2789(00)00043-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033341451
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1029/2003gl018004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030337072
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1029/2006gl027927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012770867
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1029/2007rg000228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030493926
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1029/2009gl038617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037101579
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1029/2010jd015452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002846916
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1073/pnas.0701020104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036261477
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1080/01621459.1968.10480934 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058300261
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1080/07055900.2000.9649654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011493546
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1098/rspa.1998.0193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048418364
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevlett.77.635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045449821
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1142/s1793536909000047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063022921
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1175/1520-0442(2001)014<2204:coewhi>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016324966
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1175/2007jcli1348.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016826134
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1175/2010jcli3654.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020348609
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1175/2010jcli3908.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040455575
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1175/jam2504.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029718107
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1175/jamc-d-14-0295.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014567248
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1175/jcli-d-10-05012.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029387662
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1175/jcli-d-11-00293.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063454917
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1175/jcli-d-13-00235.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051542142
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1175/jcli-d-13-00393.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034181783
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1175/jcli-d-14-00159.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041414386
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1175/jcli3366.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045132887
176 rdf:type schema:CreativeWork
177 https://doi.org/10.3354/cr01053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071158853
178 rdf:type schema:CreativeWork
179 https://doi.org/10.3354/cr027119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071159614
180 rdf:type schema:CreativeWork
181 https://doi.org/10.3724/sp.j.1248.2014.066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019257764
182 rdf:type schema:CreativeWork
183 https://www.grid.ac/institutes/grid.424023.3 schema:alternateName Institute of Atmospheric Physics
184 schema:name Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, P. O. Box 9804, 100029, Beijing, China
185 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...