North American extreme temperature events and related large scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-05-22

AUTHORS

Richard Grotjahn, Robert Black, Ruby Leung, Michael F. Wehner, Mathew Barlow, Mike Bosilovich, Alexander Gershunov, William J. Gutowski, John R. Gyakum, Richard W. Katz, Yun-Young Lee, Young-Kwon Lim, Prabhat

ABSTRACT

The objective of this paper is to review statistical methods, dynamics, modeling efforts, and trends related to temperature extremes, with a focus upon extreme events of short duration that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). The statistics, dynamics, and modeling sections of this paper are written to be autonomous and so can be read separately. Methods to define extreme events statistics and to identify and connect LSMPs to extreme temperature events are presented. Recent advances in statistical techniques connect LSMPs to extreme temperatures through appropriately defined covariates that supplement more straightforward analyses. Various LSMPs, ranging from synoptic to planetary scale structures, are associated with extreme temperature events. Current knowledge about the synoptics and the dynamical mechanisms leading to the associated LSMPs is incomplete. Systematic studies of: the physics of LSMP life cycles, comprehensive model assessment of LSMP-extreme temperature event linkages, and LSMP properties are needed. Generally, climate models capture observed properties of heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreak frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Modeling studies have identified the impact of large-scale circulation anomalies and land–atmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs to more specifically understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated. The paper concludes with unresolved issues and research questions. More... »

PAGES

1151-1184

References to SciGraph publications

  • 2011-07-22. Global changes in extreme events: regional and seasonal dimension in CLIMATIC CHANGE
  • 2010-04-06. Impact of soil moisture–atmosphere coupling on European climate extremes and trends in a regional climate model in CLIMATE DYNAMICS
  • 2013-10-27. Probability of US heat waves affected by a subseasonal planetary wave pattern in NATURE GEOSCIENCE
  • 2010-09-05. ENSO regulation of MJO teleconnection in CLIMATE DYNAMICS
  • 2010-02. The next generation of scenarios for climate change research and assessment in NATURE
  • 2011-02-08. Identifying extreme hottest days from large scale upper air data: a pilot scheme to find California Central Valley summertime maximum surface temperatures in CLIMATE DYNAMICS
  • 2011-11-12. A link between Arctic sea ice and recent cooling trends over Eurasia in CLIMATIC CHANGE
  • 2010-02-25. Sources of uncertainty in the extreme value statistics of climate data in EXTREMES
  • 2014-08-17. Recent Arctic amplification and extreme mid-latitude weather in NATURE GEOSCIENCE
  • 2006-09. Land–atmosphere coupling and climate change in Europe in NATURE
  • 2006-01-12. Extra-tropical cyclonic/anticyclonic activity in North-Eastern Pacific and air temperature extremes in Western North America in CLIMATE DYNAMICS
  • 2001. An Introduction to Statistical Modeling of Extreme Values in NONE
  • 2006-10-10. Going to the Extremes in CLIMATIC CHANGE
  • 2013-02-20. Changes in temperature and precipitation extremes in the CMIP5 ensemble in CLIMATIC CHANGE
  • 1999-03. Development of Regional Climate Scenarios Using a Downscaling Approach in CLIMATIC CHANGE
  • 2010-05-20. Statistics of extremes in climate change in CLIMATIC CHANGE
  • 2013-01-20. Ability of CCSM4 to simulate California extreme heat conditions from evaluating simulations of the associated large scale upper air pattern in CLIMATE DYNAMICS
  • 2008. Back to Norway: An Essay in SYNOPTIC—DYNAMIC METEOROLOGY AND WEATHER ANALYSIS AND FORECASTING
  • 1995. Self-Organizing Maps in NONE
  • 2007-03-09. Climate change and heat-related mortality in six cities Part 1: model construction and validation in INTERNATIONAL JOURNAL OF BIOMETEOROLOGY
  • 2011-08-05. The representative concentration pathways: an overview in CLIMATIC CHANGE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00382-015-2638-6

    DOI

    http://dx.doi.org/10.1007/s00382-015-2638-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1047105041


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Atmospheric Science Program, Department of L.A.W.R., University of California Davis, One Shields Ave., 95616, Davis, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.27860.3b", 
              "name": [
                "Atmospheric Science Program, Department of L.A.W.R., University of California Davis, One Shields Ave., 95616, Davis, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grotjahn", 
            "givenName": "Richard", 
            "id": "sg:person.011116136357.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011116136357.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, 30332-0340, Atlanta, GA, USA", 
              "id": "http://www.grid.ac/institutes/grid.213917.f", 
              "name": [
                "School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, 30332-0340, Atlanta, GA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Black", 
            "givenName": "Robert", 
            "id": "sg:person.014475037461.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014475037461.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pacific Northwest National Laboratory, 99352, Richland, WA, USA", 
              "id": "http://www.grid.ac/institutes/grid.451303.0", 
              "name": [
                "Pacific Northwest National Laboratory, 99352, Richland, WA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Leung", 
            "givenName": "Ruby", 
            "id": "sg:person.0641324677.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641324677.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.184769.5", 
              "name": [
                "Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wehner", 
            "givenName": "Michael F.", 
            "id": "sg:person.016152704227.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016152704227.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Massachusetts Lowell, 01854, Lowell, MA, USA", 
              "id": "http://www.grid.ac/institutes/grid.225262.3", 
              "name": [
                "University of Massachusetts Lowell, 01854, Lowell, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barlow", 
            "givenName": "Mathew", 
            "id": "sg:person.014452370223.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014452370223.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "NASA GSFC Global Modeling and Assimilation Office, 20771, Greenbelt, MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.133275.1", 
              "name": [
                "NASA GSFC Global Modeling and Assimilation Office, 20771, Greenbelt, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bosilovich", 
            "givenName": "Mike", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Climate, Atmospheric Science and Physical Oceanography (CASPO) Division, Scripps Institution of Oceanography, University of California San Diego, 92093, La Jolla, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.217200.6", 
              "name": [
                "Climate, Atmospheric Science and Physical Oceanography (CASPO) Division, Scripps Institution of Oceanography, University of California San Diego, 92093, La Jolla, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gershunov", 
            "givenName": "Alexander", 
            "id": "sg:person.0640317341.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640317341.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Geological and Atmospheric Sciences, Iowa State University, 50011, Ames, IA, USA", 
              "id": "http://www.grid.ac/institutes/grid.34421.30", 
              "name": [
                "Department of Geological and Atmospheric Sciences, Iowa State University, 50011, Ames, IA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gutowski", 
            "givenName": "William J.", 
            "id": "sg:person.013166424105.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166424105.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Atmospheric and Oceanic Sciences, McGill University, H3A 0B9, Montreal, QC, Canada", 
              "id": "http://www.grid.ac/institutes/grid.14709.3b", 
              "name": [
                "Department of Atmospheric and Oceanic Sciences, McGill University, H3A 0B9, Montreal, QC, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gyakum", 
            "givenName": "John R.", 
            "id": "sg:person.0661511060.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661511060.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Mathematics Applied to Geosciences, National Center for Atmospheric Research, 80307, Boulder, CO, USA", 
              "id": "http://www.grid.ac/institutes/grid.57828.30", 
              "name": [
                "Institute for Mathematics Applied to Geosciences, National Center for Atmospheric Research, 80307, Boulder, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Katz", 
            "givenName": "Richard W.", 
            "id": "sg:person.07365657053.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07365657053.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Atmospheric Science Program, Department of L.A.W.R., University of California Davis, One Shields Ave., 95616, Davis, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.27860.3b", 
              "name": [
                "Atmospheric Science Program, Department of L.A.W.R., University of California Davis, One Shields Ave., 95616, Davis, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Yun-Young", 
            "id": "sg:person.013407064367.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013407064367.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "NASA Goddard Space Flight Center, Global Modeling and Assimilation Office, Goddard Earth Sciences Technology and Research/I.M. Systems Group, 8800 Greenbelt Rd, 20771, Greenbelt, MD, USA", 
              "id": "http://www.grid.ac/institutes/grid.133275.1", 
              "name": [
                "NASA Goddard Space Flight Center, Global Modeling and Assimilation Office, Goddard Earth Sciences Technology and Research/I.M. Systems Group, 8800 Greenbelt Rd, 20771, Greenbelt, MD, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lim", 
            "givenName": "Young-Kwon", 
            "id": "sg:person.011267627065.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011267627065.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.184769.5", 
              "name": [
                "Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Prabhat", 
            "id": "sg:person.015631144015.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631144015.37"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-97610-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033174751", 
              "https://doi.org/10.1007/978-3-642-97610-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-011-0999-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016924114", 
              "https://doi.org/10.1007/s00382-011-0999-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00484-007-0092-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008527257", 
              "https://doi.org/10.1007/s00484-007-0092-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-013-0705-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038008793", 
              "https://doi.org/10.1007/s10584-013-0705-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0902-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028677448", 
              "https://doi.org/10.1007/s00382-010-0902-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-006-9051-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033458924", 
              "https://doi.org/10.1007/s10584-006-9051-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08823", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006069800", 
              "https://doi.org/10.1038/nature08823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo1988", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027093967", 
              "https://doi.org/10.1038/ngeo1988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo2234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023510288", 
              "https://doi.org/10.1038/ngeo2234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10687-010-0105-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006685350", 
              "https://doi.org/10.1007/s10687-010-0105-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4471-3675-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001789312", 
              "https://doi.org/10.1007/978-1-4471-3675-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-010-9834-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009722454", 
              "https://doi.org/10.1007/s10584-010-9834-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1005425613593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029677342", 
              "https://doi.org/10.1023/a:1005425613593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-005-0101-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027422168", 
              "https://doi.org/10.1007/s00382-005-0101-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-011-0334-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002442726", 
              "https://doi.org/10.1007/s10584-011-0334-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-011-0122-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040318214", 
              "https://doi.org/10.1007/s10584-011-0122-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-933876-68-2_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051579646", 
              "https://doi.org/10.1007/978-0-933876-68-2_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-013-1668-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030637162", 
              "https://doi.org/10.1007/s00382-013-1668-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-011-0148-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021241034", 
              "https://doi.org/10.1007/s10584-011-0148-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043618867", 
              "https://doi.org/10.1038/nature05095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0780-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051625990", 
              "https://doi.org/10.1007/s00382-010-0780-8"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-05-22", 
        "datePublishedReg": "2015-05-22", 
        "description": "Abstract\nThe objective of this paper is to review statistical methods, dynamics, modeling efforts, and trends related to temperature extremes, with a focus upon extreme events of short duration that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). The statistics, dynamics, and modeling sections of this paper are written to be autonomous and so can be read separately. Methods to define extreme events statistics and to identify and connect LSMPs to extreme temperature events are presented. Recent advances in statistical techniques connect LSMPs to extreme temperatures through appropriately defined covariates that supplement more straightforward analyses. Various LSMPs, ranging from synoptic to planetary scale structures, are associated with extreme temperature events. Current knowledge about the synoptics and the dynamical mechanisms leading to the associated LSMPs is incomplete. Systematic studies of: the physics of LSMP life cycles, comprehensive model assessment of LSMP-extreme temperature event linkages, and LSMP properties are needed. Generally, climate models capture observed properties of heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreak frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Modeling studies have identified the impact of large-scale circulation anomalies and land\u2013atmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs to more specifically understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated. The paper concludes with unresolved issues and research questions.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00382-015-2638-6", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3116565", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3125348", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4320694", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3479980", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3125298", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3126548", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3144413", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8692497", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4321871", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3004556", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8758390", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3480331", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4108506", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1049631", 
            "issn": [
              "0930-7575", 
              "1432-0894"
            ], 
            "name": "Climate Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "46"
          }
        ], 
        "keywords": [
          "large-scale meteorological patterns", 
          "extreme temperature events", 
          "temperature events", 
          "climate models", 
          "meteorological patterns", 
          "temperature extremes", 
          "large-scale circulation anomalies", 
          "regional climate model", 
          "land\u2013atmosphere interactions", 
          "cold air outbreaks", 
          "planetary-scale structure", 
          "statistical methods", 
          "comprehensive model assessment", 
          "extreme temperatures", 
          "extreme temperature changes", 
          "extreme event statistics", 
          "circulation anomalies", 
          "air outbreaks", 
          "extreme events", 
          "heat waves", 
          "dynamical mechanism", 
          "event statistics", 
          "North America", 
          "temperature changes", 
          "outbreak frequency", 
          "modeling studies", 
          "statistical techniques", 
          "wave frequency", 
          "observed properties", 
          "extremes", 
          "scale structure", 
          "events", 
          "modeling section", 
          "low-frequency modes", 
          "straightforward analysis", 
          "dynamics", 
          "statistics", 
          "trends", 
          "anomalies", 
          "collective influence", 
          "physics", 
          "SYNOPTIC", 
          "changes", 
          "systematic study", 
          "temperature", 
          "America", 
          "short duration", 
          "model", 
          "patterns", 
          "waves", 
          "properties", 
          "modeling", 
          "cycle", 
          "sections", 
          "part", 
          "unresolved issues", 
          "impact", 
          "frequency", 
          "fidelity", 
          "life cycle", 
          "influence", 
          "technique", 
          "covariates", 
          "structure", 
          "study", 
          "linkage", 
          "mode", 
          "recent advances", 
          "assessment", 
          "current knowledge", 
          "model assessment", 
          "analysis", 
          "duration", 
          "advances", 
          "interaction", 
          "method", 
          "objective", 
          "paper", 
          "mechanism", 
          "role", 
          "focus", 
          "efforts", 
          "knowledge", 
          "questions", 
          "issues", 
          "research questions", 
          "outbreak", 
          "review"
        ], 
        "name": "North American extreme temperature events and related large scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends", 
        "pagination": "1151-1184", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1047105041"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00382-015-2638-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00382-015-2638-6", 
          "https://app.dimensions.ai/details/publication/pub.1047105041"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:15", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_679.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00382-015-2638-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-015-2638-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-015-2638-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-015-2638-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-015-2638-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    367 TRIPLES      22 PREDICATES      134 URIs      105 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00382-015-2638-6 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 schema:author N76572e41ef8845429595232066e515bd
    4 schema:citation sg:pub.10.1007/978-0-933876-68-2_3
    5 sg:pub.10.1007/978-1-4471-3675-0
    6 sg:pub.10.1007/978-3-642-97610-0
    7 sg:pub.10.1007/s00382-005-0101-9
    8 sg:pub.10.1007/s00382-010-0780-8
    9 sg:pub.10.1007/s00382-010-0902-3
    10 sg:pub.10.1007/s00382-011-0999-z
    11 sg:pub.10.1007/s00382-013-1668-1
    12 sg:pub.10.1007/s00484-007-0092-9
    13 sg:pub.10.1007/s10584-006-9051-4
    14 sg:pub.10.1007/s10584-010-9834-5
    15 sg:pub.10.1007/s10584-011-0122-9
    16 sg:pub.10.1007/s10584-011-0148-z
    17 sg:pub.10.1007/s10584-011-0334-z
    18 sg:pub.10.1007/s10584-013-0705-8
    19 sg:pub.10.1007/s10687-010-0105-7
    20 sg:pub.10.1023/a:1005425613593
    21 sg:pub.10.1038/nature05095
    22 sg:pub.10.1038/nature08823
    23 sg:pub.10.1038/ngeo1988
    24 sg:pub.10.1038/ngeo2234
    25 schema:datePublished 2015-05-22
    26 schema:datePublishedReg 2015-05-22
    27 schema:description Abstract The objective of this paper is to review statistical methods, dynamics, modeling efforts, and trends related to temperature extremes, with a focus upon extreme events of short duration that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). The statistics, dynamics, and modeling sections of this paper are written to be autonomous and so can be read separately. Methods to define extreme events statistics and to identify and connect LSMPs to extreme temperature events are presented. Recent advances in statistical techniques connect LSMPs to extreme temperatures through appropriately defined covariates that supplement more straightforward analyses. Various LSMPs, ranging from synoptic to planetary scale structures, are associated with extreme temperature events. Current knowledge about the synoptics and the dynamical mechanisms leading to the associated LSMPs is incomplete. Systematic studies of: the physics of LSMP life cycles, comprehensive model assessment of LSMP-extreme temperature event linkages, and LSMP properties are needed. Generally, climate models capture observed properties of heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreak frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Modeling studies have identified the impact of large-scale circulation anomalies and land–atmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs to more specifically understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated. The paper concludes with unresolved issues and research questions.
    28 schema:genre article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree true
    31 schema:isPartOf N1f9d5751211c4ddb923e02b40d772e1a
    32 N63dc69bf81124fc7bd53fd580544c56e
    33 sg:journal.1049631
    34 schema:keywords America
    35 North America
    36 SYNOPTIC
    37 advances
    38 air outbreaks
    39 analysis
    40 anomalies
    41 assessment
    42 changes
    43 circulation anomalies
    44 climate models
    45 cold air outbreaks
    46 collective influence
    47 comprehensive model assessment
    48 covariates
    49 current knowledge
    50 cycle
    51 duration
    52 dynamical mechanism
    53 dynamics
    54 efforts
    55 event statistics
    56 events
    57 extreme event statistics
    58 extreme events
    59 extreme temperature changes
    60 extreme temperature events
    61 extreme temperatures
    62 extremes
    63 fidelity
    64 focus
    65 frequency
    66 heat waves
    67 impact
    68 influence
    69 interaction
    70 issues
    71 knowledge
    72 land–atmosphere interactions
    73 large-scale circulation anomalies
    74 large-scale meteorological patterns
    75 life cycle
    76 linkage
    77 low-frequency modes
    78 mechanism
    79 meteorological patterns
    80 method
    81 mode
    82 model
    83 model assessment
    84 modeling
    85 modeling section
    86 modeling studies
    87 objective
    88 observed properties
    89 outbreak
    90 outbreak frequency
    91 paper
    92 part
    93 patterns
    94 physics
    95 planetary-scale structure
    96 properties
    97 questions
    98 recent advances
    99 regional climate model
    100 research questions
    101 review
    102 role
    103 scale structure
    104 sections
    105 short duration
    106 statistical methods
    107 statistical techniques
    108 statistics
    109 straightforward analysis
    110 structure
    111 study
    112 systematic study
    113 technique
    114 temperature
    115 temperature changes
    116 temperature events
    117 temperature extremes
    118 trends
    119 unresolved issues
    120 wave frequency
    121 waves
    122 schema:name North American extreme temperature events and related large scale meteorological patterns: a review of statistical methods, dynamics, modeling, and trends
    123 schema:pagination 1151-1184
    124 schema:productId N7a894ca2c40443a58238eaf2f6a15905
    125 Nc7a0776dcde74b24b774fbb6fb3ef299
    126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047105041
    127 https://doi.org/10.1007/s00382-015-2638-6
    128 schema:sdDatePublished 2022-06-01T22:15
    129 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    130 schema:sdPublisher Nf7e3449b391f43b786fa92123b1e6d74
    131 schema:url https://doi.org/10.1007/s00382-015-2638-6
    132 sgo:license sg:explorer/license/
    133 sgo:sdDataset articles
    134 rdf:type schema:ScholarlyArticle
    135 N00c8c43687f3473eb09f94c9bc15118f schema:affiliation grid-institutes:grid.133275.1
    136 schema:familyName Bosilovich
    137 schema:givenName Mike
    138 rdf:type schema:Person
    139 N12ae02e663cb4cefbb30ecbbda6819fc rdf:first sg:person.0640317341.35
    140 rdf:rest Nbcce8207a6794666a49520d2ecf82663
    141 N1bc9fefd153b465889efd5da3301e916 rdf:first sg:person.013407064367.37
    142 rdf:rest Nb239a1123b9249d08ec7645b0f7ded94
    143 N1f9d5751211c4ddb923e02b40d772e1a schema:issueNumber 3-4
    144 rdf:type schema:PublicationIssue
    145 N40cbcf0cdeba49908c19e4755df326f5 rdf:first sg:person.0641324677.36
    146 rdf:rest N4f12cc5b5bd142c8abea23bbfb04e25d
    147 N4f12cc5b5bd142c8abea23bbfb04e25d rdf:first sg:person.016152704227.55
    148 rdf:rest Nbe3d19d9fc4348e9b234daf073fbffd9
    149 N63dc69bf81124fc7bd53fd580544c56e schema:volumeNumber 46
    150 rdf:type schema:PublicationVolume
    151 N66996c8163a5459591b189bb984334be rdf:first N00c8c43687f3473eb09f94c9bc15118f
    152 rdf:rest N12ae02e663cb4cefbb30ecbbda6819fc
    153 N76572e41ef8845429595232066e515bd rdf:first sg:person.011116136357.23
    154 rdf:rest Ndb98a0964b3f48cc9e62fffac4306794
    155 N7a894ca2c40443a58238eaf2f6a15905 schema:name dimensions_id
    156 schema:value pub.1047105041
    157 rdf:type schema:PropertyValue
    158 Na719bc9654bf43238032df5ffa1479d3 rdf:first sg:person.07365657053.04
    159 rdf:rest N1bc9fefd153b465889efd5da3301e916
    160 Nabbc2a08e8344a11b2ca9707f259de32 rdf:first sg:person.015631144015.37
    161 rdf:rest rdf:nil
    162 Nb239a1123b9249d08ec7645b0f7ded94 rdf:first sg:person.011267627065.45
    163 rdf:rest Nabbc2a08e8344a11b2ca9707f259de32
    164 Nbcce8207a6794666a49520d2ecf82663 rdf:first sg:person.013166424105.12
    165 rdf:rest Ndfd4b0f4efb843a89e9abaa883e27b74
    166 Nbe3d19d9fc4348e9b234daf073fbffd9 rdf:first sg:person.014452370223.13
    167 rdf:rest N66996c8163a5459591b189bb984334be
    168 Nc7a0776dcde74b24b774fbb6fb3ef299 schema:name doi
    169 schema:value 10.1007/s00382-015-2638-6
    170 rdf:type schema:PropertyValue
    171 Ndb98a0964b3f48cc9e62fffac4306794 rdf:first sg:person.014475037461.83
    172 rdf:rest N40cbcf0cdeba49908c19e4755df326f5
    173 Ndfd4b0f4efb843a89e9abaa883e27b74 rdf:first sg:person.0661511060.95
    174 rdf:rest Na719bc9654bf43238032df5ffa1479d3
    175 Nf7e3449b391f43b786fa92123b1e6d74 schema:name Springer Nature - SN SciGraph project
    176 rdf:type schema:Organization
    177 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    178 schema:name Earth Sciences
    179 rdf:type schema:DefinedTerm
    180 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    181 schema:name Atmospheric Sciences
    182 rdf:type schema:DefinedTerm
    183 sg:grant.3004556 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-015-2638-6
    184 rdf:type schema:MonetaryGrant
    185 sg:grant.3116565 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-015-2638-6
    186 rdf:type schema:MonetaryGrant
    187 sg:grant.3125298 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-015-2638-6
    188 rdf:type schema:MonetaryGrant
    189 sg:grant.3125348 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-015-2638-6
    190 rdf:type schema:MonetaryGrant
    191 sg:grant.3126548 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-015-2638-6
    192 rdf:type schema:MonetaryGrant
    193 sg:grant.3144413 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-015-2638-6
    194 rdf:type schema:MonetaryGrant
    195 sg:grant.3479980 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-015-2638-6
    196 rdf:type schema:MonetaryGrant
    197 sg:grant.3480331 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-015-2638-6
    198 rdf:type schema:MonetaryGrant
    199 sg:grant.4108506 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-015-2638-6
    200 rdf:type schema:MonetaryGrant
    201 sg:grant.4320694 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-015-2638-6
    202 rdf:type schema:MonetaryGrant
    203 sg:grant.4321871 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-015-2638-6
    204 rdf:type schema:MonetaryGrant
    205 sg:grant.8692497 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-015-2638-6
    206 rdf:type schema:MonetaryGrant
    207 sg:grant.8758390 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-015-2638-6
    208 rdf:type schema:MonetaryGrant
    209 sg:journal.1049631 schema:issn 0930-7575
    210 1432-0894
    211 schema:name Climate Dynamics
    212 schema:publisher Springer Nature
    213 rdf:type schema:Periodical
    214 sg:person.011116136357.23 schema:affiliation grid-institutes:grid.27860.3b
    215 schema:familyName Grotjahn
    216 schema:givenName Richard
    217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011116136357.23
    218 rdf:type schema:Person
    219 sg:person.011267627065.45 schema:affiliation grid-institutes:grid.133275.1
    220 schema:familyName Lim
    221 schema:givenName Young-Kwon
    222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011267627065.45
    223 rdf:type schema:Person
    224 sg:person.013166424105.12 schema:affiliation grid-institutes:grid.34421.30
    225 schema:familyName Gutowski
    226 schema:givenName William J.
    227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013166424105.12
    228 rdf:type schema:Person
    229 sg:person.013407064367.37 schema:affiliation grid-institutes:grid.27860.3b
    230 schema:familyName Lee
    231 schema:givenName Yun-Young
    232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013407064367.37
    233 rdf:type schema:Person
    234 sg:person.014452370223.13 schema:affiliation grid-institutes:grid.225262.3
    235 schema:familyName Barlow
    236 schema:givenName Mathew
    237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014452370223.13
    238 rdf:type schema:Person
    239 sg:person.014475037461.83 schema:affiliation grid-institutes:grid.213917.f
    240 schema:familyName Black
    241 schema:givenName Robert
    242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014475037461.83
    243 rdf:type schema:Person
    244 sg:person.015631144015.37 schema:affiliation grid-institutes:grid.184769.5
    245 schema:familyName Prabhat
    246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631144015.37
    247 rdf:type schema:Person
    248 sg:person.016152704227.55 schema:affiliation grid-institutes:grid.184769.5
    249 schema:familyName Wehner
    250 schema:givenName Michael F.
    251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016152704227.55
    252 rdf:type schema:Person
    253 sg:person.0640317341.35 schema:affiliation grid-institutes:grid.217200.6
    254 schema:familyName Gershunov
    255 schema:givenName Alexander
    256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640317341.35
    257 rdf:type schema:Person
    258 sg:person.0641324677.36 schema:affiliation grid-institutes:grid.451303.0
    259 schema:familyName Leung
    260 schema:givenName Ruby
    261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641324677.36
    262 rdf:type schema:Person
    263 sg:person.0661511060.95 schema:affiliation grid-institutes:grid.14709.3b
    264 schema:familyName Gyakum
    265 schema:givenName John R.
    266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661511060.95
    267 rdf:type schema:Person
    268 sg:person.07365657053.04 schema:affiliation grid-institutes:grid.57828.30
    269 schema:familyName Katz
    270 schema:givenName Richard W.
    271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07365657053.04
    272 rdf:type schema:Person
    273 sg:pub.10.1007/978-0-933876-68-2_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051579646
    274 https://doi.org/10.1007/978-0-933876-68-2_3
    275 rdf:type schema:CreativeWork
    276 sg:pub.10.1007/978-1-4471-3675-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001789312
    277 https://doi.org/10.1007/978-1-4471-3675-0
    278 rdf:type schema:CreativeWork
    279 sg:pub.10.1007/978-3-642-97610-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033174751
    280 https://doi.org/10.1007/978-3-642-97610-0
    281 rdf:type schema:CreativeWork
    282 sg:pub.10.1007/s00382-005-0101-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027422168
    283 https://doi.org/10.1007/s00382-005-0101-9
    284 rdf:type schema:CreativeWork
    285 sg:pub.10.1007/s00382-010-0780-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051625990
    286 https://doi.org/10.1007/s00382-010-0780-8
    287 rdf:type schema:CreativeWork
    288 sg:pub.10.1007/s00382-010-0902-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028677448
    289 https://doi.org/10.1007/s00382-010-0902-3
    290 rdf:type schema:CreativeWork
    291 sg:pub.10.1007/s00382-011-0999-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1016924114
    292 https://doi.org/10.1007/s00382-011-0999-z
    293 rdf:type schema:CreativeWork
    294 sg:pub.10.1007/s00382-013-1668-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030637162
    295 https://doi.org/10.1007/s00382-013-1668-1
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1007/s00484-007-0092-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008527257
    298 https://doi.org/10.1007/s00484-007-0092-9
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1007/s10584-006-9051-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033458924
    301 https://doi.org/10.1007/s10584-006-9051-4
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1007/s10584-010-9834-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009722454
    304 https://doi.org/10.1007/s10584-010-9834-5
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1007/s10584-011-0122-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040318214
    307 https://doi.org/10.1007/s10584-011-0122-9
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1007/s10584-011-0148-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1021241034
    310 https://doi.org/10.1007/s10584-011-0148-z
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1007/s10584-011-0334-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1002442726
    313 https://doi.org/10.1007/s10584-011-0334-z
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1007/s10584-013-0705-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038008793
    316 https://doi.org/10.1007/s10584-013-0705-8
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1007/s10687-010-0105-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006685350
    319 https://doi.org/10.1007/s10687-010-0105-7
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1023/a:1005425613593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029677342
    322 https://doi.org/10.1023/a:1005425613593
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1038/nature05095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043618867
    325 https://doi.org/10.1038/nature05095
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1038/nature08823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006069800
    328 https://doi.org/10.1038/nature08823
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1038/ngeo1988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027093967
    331 https://doi.org/10.1038/ngeo1988
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1038/ngeo2234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023510288
    334 https://doi.org/10.1038/ngeo2234
    335 rdf:type schema:CreativeWork
    336 grid-institutes:grid.133275.1 schema:alternateName NASA GSFC Global Modeling and Assimilation Office, 20771, Greenbelt, MD, USA
    337 NASA Goddard Space Flight Center, Global Modeling and Assimilation Office, Goddard Earth Sciences Technology and Research/I.M. Systems Group, 8800 Greenbelt Rd, 20771, Greenbelt, MD, USA
    338 schema:name NASA GSFC Global Modeling and Assimilation Office, 20771, Greenbelt, MD, USA
    339 NASA Goddard Space Flight Center, Global Modeling and Assimilation Office, Goddard Earth Sciences Technology and Research/I.M. Systems Group, 8800 Greenbelt Rd, 20771, Greenbelt, MD, USA
    340 rdf:type schema:Organization
    341 grid-institutes:grid.14709.3b schema:alternateName Department of Atmospheric and Oceanic Sciences, McGill University, H3A 0B9, Montreal, QC, Canada
    342 schema:name Department of Atmospheric and Oceanic Sciences, McGill University, H3A 0B9, Montreal, QC, Canada
    343 rdf:type schema:Organization
    344 grid-institutes:grid.184769.5 schema:alternateName Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA
    345 schema:name Lawrence Berkeley National Laboratory, 94720, Berkeley, CA, USA
    346 rdf:type schema:Organization
    347 grid-institutes:grid.213917.f schema:alternateName School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, 30332-0340, Atlanta, GA, USA
    348 schema:name School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, 30332-0340, Atlanta, GA, USA
    349 rdf:type schema:Organization
    350 grid-institutes:grid.217200.6 schema:alternateName Climate, Atmospheric Science and Physical Oceanography (CASPO) Division, Scripps Institution of Oceanography, University of California San Diego, 92093, La Jolla, CA, USA
    351 schema:name Climate, Atmospheric Science and Physical Oceanography (CASPO) Division, Scripps Institution of Oceanography, University of California San Diego, 92093, La Jolla, CA, USA
    352 rdf:type schema:Organization
    353 grid-institutes:grid.225262.3 schema:alternateName University of Massachusetts Lowell, 01854, Lowell, MA, USA
    354 schema:name University of Massachusetts Lowell, 01854, Lowell, MA, USA
    355 rdf:type schema:Organization
    356 grid-institutes:grid.27860.3b schema:alternateName Atmospheric Science Program, Department of L.A.W.R., University of California Davis, One Shields Ave., 95616, Davis, CA, USA
    357 schema:name Atmospheric Science Program, Department of L.A.W.R., University of California Davis, One Shields Ave., 95616, Davis, CA, USA
    358 rdf:type schema:Organization
    359 grid-institutes:grid.34421.30 schema:alternateName Department of Geological and Atmospheric Sciences, Iowa State University, 50011, Ames, IA, USA
    360 schema:name Department of Geological and Atmospheric Sciences, Iowa State University, 50011, Ames, IA, USA
    361 rdf:type schema:Organization
    362 grid-institutes:grid.451303.0 schema:alternateName Pacific Northwest National Laboratory, 99352, Richland, WA, USA
    363 schema:name Pacific Northwest National Laboratory, 99352, Richland, WA, USA
    364 rdf:type schema:Organization
    365 grid-institutes:grid.57828.30 schema:alternateName Institute for Mathematics Applied to Geosciences, National Center for Atmospheric Research, 80307, Boulder, CO, USA
    366 schema:name Institute for Mathematics Applied to Geosciences, National Center for Atmospheric Research, 80307, Boulder, CO, USA
    367 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...