Asymmetric impact of the physiological effect of carbon dioxide on hydrological responses to instantaneous negative and positive CO2 forcing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-01-07

AUTHORS

Manabu Abe, Hideo Shiogama, Tokuta Yokohata, Seita Emori, Toru Nozawa

ABSTRACT

We conducted sensitivity experiments using a coupled atmosphere–ocean general circulation model to examine the asymmetry between the hydrological responses to instantaneous positive and negative CO2 forcing and the impact of the CO2 physiological effects (CDPEs) on these responses. This study focuses on the fast response occurring on time scales shorter than 1 year after imposing CO2 forcing. Experiments investigating the CO2 physiological effect show that the fast response of precipitation to positive CO2 forcing is a decrease in the global and annual mean, whereas that of negative forcing is an increase the global and annual mean precipitation. The fast global precipitation response to negative forcing is stronger than the response to positive forcing. In contrast, the experiments without the CDPE reveal similar magnitudes of the fast global precipitation responses to negative and positive CO2 forcing. Significant differences in the magnitudes of the fast precipitation response due to the CDPE are found in tropical regions such as the Amazon Basin, the Maritime Continents, and tropical Africa, where C3-type plants are common. The stomatal conductance of plant leaves is decreased by both positive and negative CO2 forcing, which suppress the transpiration from the leaves. Consequently, the CDPE enhances the asymmetry of the fast precipitation responses to positive and negative CO2 forcing. The asymmetric impact of CDPE requires a careful evaluation of future hydrological changes which is constrained by paleoclimate evidence. More... »

PAGES

2181-2192

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-014-2465-1

DOI

http://dx.doi.org/10.1007/s00382-014-2465-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034266160


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Integrated Climate Change Prediction Research, Japan Agency for Marine-Earth Science and Technology, 236-0001, Yokohama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.410588.0", 
          "name": [
            "Department of Integrated Climate Change Prediction Research, Japan Agency for Marine-Earth Science and Technology, 236-0001, Yokohama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abe", 
        "givenName": "Manabu", 
        "id": "sg:person.0675040347.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675040347.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Global Environmental Research, National Institute for Environmental Studies, 305-8506, Tsukuba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.140139.e", 
          "name": [
            "Center for Global Environmental Research, National Institute for Environmental Studies, 305-8506, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shiogama", 
        "givenName": "Hideo", 
        "id": "sg:person.011356656533.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356656533.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Global Environmental Research, National Institute for Environmental Studies, 305-8506, Tsukuba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.140139.e", 
          "name": [
            "Center for Global Environmental Research, National Institute for Environmental Studies, 305-8506, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yokohata", 
        "givenName": "Tokuta", 
        "id": "sg:person.010775606765.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010775606765.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Global Environmental Research, National Institute for Environmental Studies, 305-8506, Tsukuba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.140139.e", 
          "name": [
            "Center for Global Environmental Research, National Institute for Environmental Studies, 305-8506, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Emori", 
        "givenName": "Seita", 
        "id": "sg:person.016137466477.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137466477.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Natural Science and Technology, Okayama University, 700-8530, Okayama, Japan", 
          "id": "http://www.grid.ac/institutes/grid.261356.5", 
          "name": [
            "Graduate School of Natural Science and Technology, Okayama University, 700-8530, Okayama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nozawa", 
        "givenName": "Toru", 
        "id": "sg:person.011033746441.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011033746441.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature06045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044599907", 
          "https://doi.org/10.1038/nature06045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007959570", 
          "https://doi.org/10.1038/nclimate1456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-010-0742-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048489400", 
          "https://doi.org/10.1007/s00382-010-0742-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1571-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012359911", 
          "https://doi.org/10.1007/s00382-012-1571-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/42924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007351501", 
          "https://doi.org/10.1038/42924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-008-0459-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033419554", 
          "https://doi.org/10.1007/s00382-008-0459-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1287-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048486891", 
          "https://doi.org/10.1007/s00382-012-1287-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021061618", 
          "https://doi.org/10.1038/nature04504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00386231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032536189", 
          "https://doi.org/10.1007/bf00386231"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-01-07", 
    "datePublishedReg": "2015-01-07", 
    "description": "We conducted sensitivity experiments using a coupled atmosphere\u2013ocean general circulation model to examine the asymmetry between the hydrological responses to instantaneous positive and negative CO2 forcing and the impact of the CO2 physiological effects (CDPEs) on these responses. This study focuses on the fast response occurring on time scales shorter than 1\u00a0year after imposing CO2 forcing. Experiments investigating the CO2 physiological effect show that the fast response of precipitation to positive CO2 forcing is a decrease in the global and annual mean, whereas that of negative forcing is an increase the global and annual mean precipitation. The fast global precipitation response to negative forcing is stronger than the response to positive forcing. In contrast, the experiments without the CDPE reveal similar magnitudes of the fast global precipitation responses to negative and positive CO2 forcing. Significant differences in the magnitudes of the fast precipitation response due to the CDPE are found in tropical regions such as the Amazon Basin, the Maritime Continents, and tropical Africa, where C3-type plants are common. The stomatal conductance of plant leaves is decreased by both positive and negative CO2 forcing, which suppress the transpiration from the leaves. Consequently, the CDPE enhances the asymmetry of the fast precipitation responses to positive and negative CO2 forcing. The asymmetric impact of CDPE requires a careful evaluation of future hydrological changes which is constrained by paleoclimate evidence.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-014-2465-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7-8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "keywords": [
      "global precipitation response", 
      "fast precipitation response", 
      "precipitation response", 
      "CO2 physiological effect", 
      "hydrological response", 
      "negative forcing", 
      "atmosphere\u2013ocean general circulation model", 
      "positive CO2", 
      "negative CO2", 
      "future hydrological changes", 
      "general circulation model", 
      "annual mean precipitation", 
      "C3-type plants", 
      "Maritime Continent", 
      "CO2 forcings", 
      "sensitivity experiments", 
      "circulation model", 
      "mean precipitation", 
      "hydrological changes", 
      "paleoclimate evidence", 
      "positive forcing", 
      "annual mean", 
      "forcing", 
      "Amazon basin", 
      "time scales", 
      "tropical regions", 
      "tropical Africa", 
      "precipitation", 
      "similar magnitude", 
      "CO2", 
      "asymmetric impact", 
      "carbon dioxide", 
      "basin", 
      "continent", 
      "magnitude", 
      "transpiration", 
      "impact", 
      "Africa", 
      "region", 
      "dioxide", 
      "scale", 
      "asymmetry", 
      "stomatal conductance", 
      "changes", 
      "experiments", 
      "model", 
      "evidence", 
      "response", 
      "years", 
      "contrast", 
      "decrease", 
      "careful evaluation", 
      "increase", 
      "fast response", 
      "effect", 
      "plant leaves", 
      "differences", 
      "study", 
      "means", 
      "plants", 
      "conductance", 
      "evaluation", 
      "physiological effects", 
      "significant differences", 
      "leaves", 
      "CDPE"
    ], 
    "name": "Asymmetric impact of the physiological effect of carbon dioxide on hydrological responses to instantaneous negative and positive CO2 forcing", 
    "pagination": "2181-2192", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034266160"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-014-2465-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-014-2465-1", 
      "https://app.dimensions.ai/details/publication/pub.1034266160"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T10:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_658.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-014-2465-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2465-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2465-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2465-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2465-1'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      22 PREDICATES      102 URIs      83 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-014-2465-1 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0405
4 anzsrc-for:0406
5 schema:author N086ac3549b2f40148e657fa4951fc3c6
6 schema:citation sg:pub.10.1007/bf00386231
7 sg:pub.10.1007/s00382-008-0459-6
8 sg:pub.10.1007/s00382-010-0742-1
9 sg:pub.10.1007/s00382-012-1287-2
10 sg:pub.10.1007/s00382-012-1571-1
11 sg:pub.10.1038/42924
12 sg:pub.10.1038/nature04504
13 sg:pub.10.1038/nature06045
14 sg:pub.10.1038/nclimate1456
15 schema:datePublished 2015-01-07
16 schema:datePublishedReg 2015-01-07
17 schema:description We conducted sensitivity experiments using a coupled atmosphere–ocean general circulation model to examine the asymmetry between the hydrological responses to instantaneous positive and negative CO2 forcing and the impact of the CO2 physiological effects (CDPEs) on these responses. This study focuses on the fast response occurring on time scales shorter than 1 year after imposing CO2 forcing. Experiments investigating the CO2 physiological effect show that the fast response of precipitation to positive CO2 forcing is a decrease in the global and annual mean, whereas that of negative forcing is an increase the global and annual mean precipitation. The fast global precipitation response to negative forcing is stronger than the response to positive forcing. In contrast, the experiments without the CDPE reveal similar magnitudes of the fast global precipitation responses to negative and positive CO2 forcing. Significant differences in the magnitudes of the fast precipitation response due to the CDPE are found in tropical regions such as the Amazon Basin, the Maritime Continents, and tropical Africa, where C3-type plants are common. The stomatal conductance of plant leaves is decreased by both positive and negative CO2 forcing, which suppress the transpiration from the leaves. Consequently, the CDPE enhances the asymmetry of the fast precipitation responses to positive and negative CO2 forcing. The asymmetric impact of CDPE requires a careful evaluation of future hydrological changes which is constrained by paleoclimate evidence.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N7d56ace9ea594b3e9a206fbaeeb091ba
22 Nf4a700ef805e47a6b0113d348729eb53
23 sg:journal.1049631
24 schema:keywords Africa
25 Amazon basin
26 C3-type plants
27 CDPE
28 CO2
29 CO2 forcings
30 CO2 physiological effect
31 Maritime Continent
32 annual mean
33 annual mean precipitation
34 asymmetric impact
35 asymmetry
36 atmosphere–ocean general circulation model
37 basin
38 carbon dioxide
39 careful evaluation
40 changes
41 circulation model
42 conductance
43 continent
44 contrast
45 decrease
46 differences
47 dioxide
48 effect
49 evaluation
50 evidence
51 experiments
52 fast precipitation response
53 fast response
54 forcing
55 future hydrological changes
56 general circulation model
57 global precipitation response
58 hydrological changes
59 hydrological response
60 impact
61 increase
62 leaves
63 magnitude
64 mean precipitation
65 means
66 model
67 negative CO2
68 negative forcing
69 paleoclimate evidence
70 physiological effects
71 plant leaves
72 plants
73 positive CO2
74 positive forcing
75 precipitation
76 precipitation response
77 region
78 response
79 scale
80 sensitivity experiments
81 significant differences
82 similar magnitude
83 stomatal conductance
84 study
85 time scales
86 transpiration
87 tropical Africa
88 tropical regions
89 years
90 schema:name Asymmetric impact of the physiological effect of carbon dioxide on hydrological responses to instantaneous negative and positive CO2 forcing
91 schema:pagination 2181-2192
92 schema:productId Na3ae80a5bf834067a1ccf781aa47cbcb
93 Nc41bb3a8d55a48d2ba9935052fec2dbc
94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034266160
95 https://doi.org/10.1007/s00382-014-2465-1
96 schema:sdDatePublished 2022-05-10T10:13
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher Nf70bfb518e494b1b9173e8904d5a9905
99 schema:url https://doi.org/10.1007/s00382-014-2465-1
100 sgo:license sg:explorer/license/
101 sgo:sdDataset articles
102 rdf:type schema:ScholarlyArticle
103 N086ac3549b2f40148e657fa4951fc3c6 rdf:first sg:person.0675040347.49
104 rdf:rest N7759538c2d724be5b91469040ac66189
105 N1d6556bcf4c44366a627332a81f89bb5 rdf:first sg:person.016137466477.58
106 rdf:rest N558a8e107c414e0cb8bdfe80841d2a07
107 N3b350e6392594b9eac7a3d9e244afa9f rdf:first sg:person.010775606765.15
108 rdf:rest N1d6556bcf4c44366a627332a81f89bb5
109 N558a8e107c414e0cb8bdfe80841d2a07 rdf:first sg:person.011033746441.19
110 rdf:rest rdf:nil
111 N7759538c2d724be5b91469040ac66189 rdf:first sg:person.011356656533.12
112 rdf:rest N3b350e6392594b9eac7a3d9e244afa9f
113 N7d56ace9ea594b3e9a206fbaeeb091ba schema:issueNumber 7-8
114 rdf:type schema:PublicationIssue
115 Na3ae80a5bf834067a1ccf781aa47cbcb schema:name dimensions_id
116 schema:value pub.1034266160
117 rdf:type schema:PropertyValue
118 Nc41bb3a8d55a48d2ba9935052fec2dbc schema:name doi
119 schema:value 10.1007/s00382-014-2465-1
120 rdf:type schema:PropertyValue
121 Nf4a700ef805e47a6b0113d348729eb53 schema:volumeNumber 45
122 rdf:type schema:PublicationVolume
123 Nf70bfb518e494b1b9173e8904d5a9905 schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
126 schema:name Earth Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
129 schema:name Atmospheric Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
132 schema:name Oceanography
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
135 schema:name Physical Geography and Environmental Geoscience
136 rdf:type schema:DefinedTerm
137 sg:journal.1049631 schema:issn 0930-7575
138 1432-0894
139 schema:name Climate Dynamics
140 schema:publisher Springer Nature
141 rdf:type schema:Periodical
142 sg:person.010775606765.15 schema:affiliation grid-institutes:grid.140139.e
143 schema:familyName Yokohata
144 schema:givenName Tokuta
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010775606765.15
146 rdf:type schema:Person
147 sg:person.011033746441.19 schema:affiliation grid-institutes:grid.261356.5
148 schema:familyName Nozawa
149 schema:givenName Toru
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011033746441.19
151 rdf:type schema:Person
152 sg:person.011356656533.12 schema:affiliation grid-institutes:grid.140139.e
153 schema:familyName Shiogama
154 schema:givenName Hideo
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356656533.12
156 rdf:type schema:Person
157 sg:person.016137466477.58 schema:affiliation grid-institutes:grid.140139.e
158 schema:familyName Emori
159 schema:givenName Seita
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137466477.58
161 rdf:type schema:Person
162 sg:person.0675040347.49 schema:affiliation grid-institutes:grid.410588.0
163 schema:familyName Abe
164 schema:givenName Manabu
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675040347.49
166 rdf:type schema:Person
167 sg:pub.10.1007/bf00386231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032536189
168 https://doi.org/10.1007/bf00386231
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s00382-008-0459-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033419554
171 https://doi.org/10.1007/s00382-008-0459-6
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s00382-010-0742-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048489400
174 https://doi.org/10.1007/s00382-010-0742-1
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s00382-012-1287-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048486891
177 https://doi.org/10.1007/s00382-012-1287-2
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s00382-012-1571-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012359911
180 https://doi.org/10.1007/s00382-012-1571-1
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/42924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007351501
183 https://doi.org/10.1038/42924
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/nature04504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021061618
186 https://doi.org/10.1038/nature04504
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nature06045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044599907
189 https://doi.org/10.1038/nature06045
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nclimate1456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007959570
192 https://doi.org/10.1038/nclimate1456
193 rdf:type schema:CreativeWork
194 grid-institutes:grid.140139.e schema:alternateName Center for Global Environmental Research, National Institute for Environmental Studies, 305-8506, Tsukuba, Japan
195 schema:name Center for Global Environmental Research, National Institute for Environmental Studies, 305-8506, Tsukuba, Japan
196 rdf:type schema:Organization
197 grid-institutes:grid.261356.5 schema:alternateName Graduate School of Natural Science and Technology, Okayama University, 700-8530, Okayama, Japan
198 schema:name Graduate School of Natural Science and Technology, Okayama University, 700-8530, Okayama, Japan
199 rdf:type schema:Organization
200 grid-institutes:grid.410588.0 schema:alternateName Department of Integrated Climate Change Prediction Research, Japan Agency for Marine-Earth Science and Technology, 236-0001, Yokohama, Japan
201 schema:name Department of Integrated Climate Change Prediction Research, Japan Agency for Marine-Earth Science and Technology, 236-0001, Yokohama, Japan
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...