The diurnal cycle of marine cloud feedback in climate models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-07-24

AUTHORS

Mark J. Webb, Adrian P. Lock, Alejandro Bodas-Salcedo, Sandrine Bony, Jason N. S. Cole, Tsuyoshi Koshiro, Hideaki Kawai, Carlo Lacagnina, Frank M. Selten, Romain Roehrig, Bjorn Stevens

ABSTRACT

We examine the diurnal cycle of marine cloud feedback using high frequency outputs in CFMIP-2 idealised uniform +4 K SST perturbation experiments from seven CMIP5 models. Most of the inter-model spread in the diurnal mean marine shortwave cloud feedback can be explained by low cloud responses, although these do not explain the model responses at the neutral/weakly negative end of the feedback range, where changes in mid and high level cloud properties are more important. All of the models show reductions in marine low cloud fraction in the warmer climate, and these are in almost all cases largest in the mornings when more cloud is present in the control simulations. This results in shortwave cloud feedbacks being slightly stronger and having the largest inter-model spread at this time of day. The diurnal amplitudes of the responses of marine cloud properties to the warming climate are however small compared to the inter-model differences in their diurnally meaned responses. This indicates that the diurnal cycle of cloud feedback is not strongly relevant to understanding inter-model spread in overall cloud feedback and climate sensitivity. A number of unusual behaviours in individual models are highlighted for future investigation. More... »

PAGES

1419-1436

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-014-2234-1

DOI

http://dx.doi.org/10.1007/s00382-014-2234-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023720164


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Webb", 
        "givenName": "Mark J.", 
        "id": "sg:person.010673066557.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010673066557.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lock", 
        "givenName": "Adrian P.", 
        "id": "sg:person.01351266124.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351266124.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bodas-Salcedo", 
        "givenName": "Alejandro", 
        "id": "sg:person.011406471151.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011406471151.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique/Institute Pierre Simon Laplace (IPSL), Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.423115.0", 
          "name": [
            "Laboratoire de M\u00e9t\u00e9orologie Dynamique/Institute Pierre Simon Laplace (IPSL), Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bony", 
        "givenName": "Sandrine", 
        "id": "sg:person.013647160343.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Canadian Centre for Climate Modelling and Analysis (CCCMa), Victoria, BC, Canada", 
          "id": "http://www.grid.ac/institutes/grid.410334.1", 
          "name": [
            "Canadian Centre for Climate Modelling and Analysis (CCCMa), Victoria, BC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cole", 
        "givenName": "Jason N. S.", 
        "id": "sg:person.012401140171.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012401140171.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Meteorological Research Institute (MRI), Tsukuba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.237586.d", 
          "name": [
            "Meteorological Research Institute (MRI), Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koshiro", 
        "givenName": "Tsuyoshi", 
        "id": "sg:person.07423102717.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07423102717.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Meteorological Research Institute (MRI), Tsukuba, Japan", 
          "id": "http://www.grid.ac/institutes/grid.237586.d", 
          "name": [
            "Meteorological Research Institute (MRI), Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawai", 
        "givenName": "Hideaki", 
        "id": "sg:person.01361354435.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361354435.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Royal Netherlands Meteorological Institute, (KNMI), De Bilt, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "The Royal Netherlands Meteorological Institute, (KNMI), De Bilt, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lacagnina", 
        "givenName": "Carlo", 
        "id": "sg:person.014601326317.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014601326317.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Royal Netherlands Meteorological Institute, (KNMI), De Bilt, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "The Royal Netherlands Meteorological Institute, (KNMI), De Bilt, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Selten", 
        "givenName": "Frank M.", 
        "id": "sg:person.011445274037.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011445274037.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre National de Recherches M\u00e9t\u00e9orologiques (CNRM), Toulouse, France", 
          "id": "http://www.grid.ac/institutes/grid.423777.2", 
          "name": [
            "Centre National de Recherches M\u00e9t\u00e9orologiques (CNRM), Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roehrig", 
        "givenName": "Romain", 
        "id": "sg:person.015526426755.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015526426755.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Meteorology (MPI-M), Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max Planck Institute for Meteorology (MPI-M), Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stevens", 
        "givenName": "Bjorn", 
        "id": "sg:person.01067536354.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067536354.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00382-012-1411-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035096477", 
          "https://doi.org/10.1007/s00382-012-1411-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-008-0487-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045325006", 
          "https://doi.org/10.1007/s00382-008-0487-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1725-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028387493", 
          "https://doi.org/10.1007/s00382-013-1725-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1336-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030808219", 
          "https://doi.org/10.1007/s00382-012-1336-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00376-012-2137-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010630312", 
          "https://doi.org/10.1007/s00376-012-2137-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-014-2093-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053481742", 
          "https://doi.org/10.1007/s00382-014-2093-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-011-1259-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038094486", 
          "https://doi.org/10.1007/s00382-011-1259-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820100157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036889233", 
          "https://doi.org/10.1007/s003820100157"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-07-24", 
    "datePublishedReg": "2014-07-24", 
    "description": "We examine the diurnal cycle of marine cloud feedback using high frequency outputs in CFMIP-2 idealised uniform +4\u00a0K SST perturbation experiments from seven CMIP5 models. Most of the inter-model spread in the diurnal mean marine shortwave cloud feedback can be explained by low cloud responses, although these do not explain the model responses at the neutral/weakly negative end of the feedback range, where changes in mid and high level cloud properties are more important. All of the models show reductions in marine low cloud fraction in the warmer climate, and these are in almost all cases largest in the mornings when more cloud is present in the control simulations. This results in shortwave cloud feedbacks being slightly stronger and having the largest inter-model spread at this time of day. The diurnal amplitudes of the responses of marine cloud properties to the warming climate are however small compared to the inter-model differences in their diurnally meaned responses. This indicates that the diurnal cycle of cloud feedback is not strongly relevant to understanding inter-model spread in overall cloud feedback and climate sensitivity. A number of unusual behaviours in individual models are highlighted for future investigation.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-014-2234-1", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7037241", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3788763", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "keywords": [
      "inter-model spread", 
      "cloud feedback", 
      "shortwave cloud feedback", 
      "diurnal cycle", 
      "cloud properties", 
      "large inter-model spread", 
      "low cloud fraction", 
      "marine cloud properties", 
      "inter-model differences", 
      "low-cloud response", 
      "CMIP5 models", 
      "cloud response", 
      "climate models", 
      "climate sensitivity", 
      "cloud fraction", 
      "warming climate", 
      "more clouds", 
      "diurnal amplitude", 
      "warmer climate", 
      "control simulation", 
      "model response", 
      "perturbation experiments", 
      "individual models", 
      "high-frequency output", 
      "climate", 
      "cycle", 
      "feedback", 
      "cloud", 
      "time of day", 
      "model", 
      "future investigations", 
      "amplitude", 
      "changes", 
      "morning", 
      "fraction", 
      "simulations", 
      "spread", 
      "range", 
      "response", 
      "unusual behavior", 
      "end", 
      "output", 
      "investigation", 
      "time", 
      "negative end", 
      "experiments", 
      "properties", 
      "differences", 
      "sensitivity", 
      "days", 
      "uniform", 
      "reduction", 
      "behavior", 
      "number", 
      "cases", 
      "frequency output"
    ], 
    "name": "The diurnal cycle of marine cloud feedback in climate models", 
    "pagination": "1419-1436", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023720164"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-014-2234-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-014-2234-1", 
      "https://app.dimensions.ai/details/publication/pub.1023720164"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_632.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-014-2234-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2234-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2234-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2234-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2234-1'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      21 PREDICATES      88 URIs      72 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-014-2234-1 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N5d586f89393844d2a5046a6bc771141a
4 schema:citation sg:pub.10.1007/s00376-012-2137-1
5 sg:pub.10.1007/s00382-008-0487-2
6 sg:pub.10.1007/s00382-011-1259-y
7 sg:pub.10.1007/s00382-012-1336-x
8 sg:pub.10.1007/s00382-012-1411-3
9 sg:pub.10.1007/s00382-013-1725-9
10 sg:pub.10.1007/s00382-014-2093-9
11 sg:pub.10.1007/s003820100157
12 schema:datePublished 2014-07-24
13 schema:datePublishedReg 2014-07-24
14 schema:description We examine the diurnal cycle of marine cloud feedback using high frequency outputs in CFMIP-2 idealised uniform +4 K SST perturbation experiments from seven CMIP5 models. Most of the inter-model spread in the diurnal mean marine shortwave cloud feedback can be explained by low cloud responses, although these do not explain the model responses at the neutral/weakly negative end of the feedback range, where changes in mid and high level cloud properties are more important. All of the models show reductions in marine low cloud fraction in the warmer climate, and these are in almost all cases largest in the mornings when more cloud is present in the control simulations. This results in shortwave cloud feedbacks being slightly stronger and having the largest inter-model spread at this time of day. The diurnal amplitudes of the responses of marine cloud properties to the warming climate are however small compared to the inter-model differences in their diurnally meaned responses. This indicates that the diurnal cycle of cloud feedback is not strongly relevant to understanding inter-model spread in overall cloud feedback and climate sensitivity. A number of unusual behaviours in individual models are highlighted for future investigation.
15 schema:genre article
16 schema:isAccessibleForFree false
17 schema:isPartOf N96d3cbd540144e1ca76c78f3e2a67fde
18 Nacb6569ccfe94af0b971f11e3c34c39e
19 sg:journal.1049631
20 schema:keywords CMIP5 models
21 amplitude
22 behavior
23 cases
24 changes
25 climate
26 climate models
27 climate sensitivity
28 cloud
29 cloud feedback
30 cloud fraction
31 cloud properties
32 cloud response
33 control simulation
34 cycle
35 days
36 differences
37 diurnal amplitude
38 diurnal cycle
39 end
40 experiments
41 feedback
42 fraction
43 frequency output
44 future investigations
45 high-frequency output
46 individual models
47 inter-model differences
48 inter-model spread
49 investigation
50 large inter-model spread
51 low cloud fraction
52 low-cloud response
53 marine cloud properties
54 model
55 model response
56 more clouds
57 morning
58 negative end
59 number
60 output
61 perturbation experiments
62 properties
63 range
64 reduction
65 response
66 sensitivity
67 shortwave cloud feedback
68 simulations
69 spread
70 time
71 time of day
72 uniform
73 unusual behavior
74 warmer climate
75 warming climate
76 schema:name The diurnal cycle of marine cloud feedback in climate models
77 schema:pagination 1419-1436
78 schema:productId N035f4ddd7d8141eb852e8f6b83fdee63
79 N067ccb26d98140a596fd5d95dcbf0d86
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023720164
81 https://doi.org/10.1007/s00382-014-2234-1
82 schema:sdDatePublished 2022-12-01T06:32
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N30544eb9b59c452f96aa06e7ae5fc5c2
85 schema:url https://doi.org/10.1007/s00382-014-2234-1
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N035f4ddd7d8141eb852e8f6b83fdee63 schema:name dimensions_id
90 schema:value pub.1023720164
91 rdf:type schema:PropertyValue
92 N067ccb26d98140a596fd5d95dcbf0d86 schema:name doi
93 schema:value 10.1007/s00382-014-2234-1
94 rdf:type schema:PropertyValue
95 N07e2581b3b284f20845af0115df70c87 rdf:first sg:person.015526426755.97
96 rdf:rest Ne2d5ccd15b4b4aaaaa1a4fc24ded3d89
97 N18b32092f9f74ce7ac27124b021fbeb9 rdf:first sg:person.013647160343.22
98 rdf:rest N5290b48d609b4651ae9a24c7b59816b9
99 N30544eb9b59c452f96aa06e7ae5fc5c2 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 N5290b48d609b4651ae9a24c7b59816b9 rdf:first sg:person.012401140171.00
102 rdf:rest N9197b1a8cf704e4d96931c295c43d599
103 N5d586f89393844d2a5046a6bc771141a rdf:first sg:person.010673066557.41
104 rdf:rest Nfdcbdb7765bf4fbbbc5ca9297dd42024
105 N849c8e609eaa44dab4712e8687e63a8a rdf:first sg:person.011445274037.60
106 rdf:rest N07e2581b3b284f20845af0115df70c87
107 N9197b1a8cf704e4d96931c295c43d599 rdf:first sg:person.07423102717.09
108 rdf:rest Nd257c9226b754fd082441cf588a20272
109 N96d3cbd540144e1ca76c78f3e2a67fde schema:volumeNumber 44
110 rdf:type schema:PublicationVolume
111 Na55e093466cf44179590ac2fec9e7c1e rdf:first sg:person.014601326317.32
112 rdf:rest N849c8e609eaa44dab4712e8687e63a8a
113 Nacb6569ccfe94af0b971f11e3c34c39e schema:issueNumber 5-6
114 rdf:type schema:PublicationIssue
115 Nbcffe4b894a8490dafb2a513f2efe99e rdf:first sg:person.011406471151.82
116 rdf:rest N18b32092f9f74ce7ac27124b021fbeb9
117 Nd257c9226b754fd082441cf588a20272 rdf:first sg:person.01361354435.07
118 rdf:rest Na55e093466cf44179590ac2fec9e7c1e
119 Ne2d5ccd15b4b4aaaaa1a4fc24ded3d89 rdf:first sg:person.01067536354.83
120 rdf:rest rdf:nil
121 Nfdcbdb7765bf4fbbbc5ca9297dd42024 rdf:first sg:person.01351266124.78
122 rdf:rest Nbcffe4b894a8490dafb2a513f2efe99e
123 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
124 schema:name Earth Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
127 schema:name Atmospheric Sciences
128 rdf:type schema:DefinedTerm
129 sg:grant.3788763 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-014-2234-1
130 rdf:type schema:MonetaryGrant
131 sg:grant.7037241 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-014-2234-1
132 rdf:type schema:MonetaryGrant
133 sg:journal.1049631 schema:issn 0930-7575
134 1432-0894
135 schema:name Climate Dynamics
136 schema:publisher Springer Nature
137 rdf:type schema:Periodical
138 sg:person.010673066557.41 schema:affiliation grid-institutes:grid.17100.37
139 schema:familyName Webb
140 schema:givenName Mark J.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010673066557.41
142 rdf:type schema:Person
143 sg:person.01067536354.83 schema:affiliation grid-institutes:grid.450268.d
144 schema:familyName Stevens
145 schema:givenName Bjorn
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067536354.83
147 rdf:type schema:Person
148 sg:person.011406471151.82 schema:affiliation grid-institutes:grid.17100.37
149 schema:familyName Bodas-Salcedo
150 schema:givenName Alejandro
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011406471151.82
152 rdf:type schema:Person
153 sg:person.011445274037.60 schema:affiliation grid-institutes:grid.8653.8
154 schema:familyName Selten
155 schema:givenName Frank M.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011445274037.60
157 rdf:type schema:Person
158 sg:person.012401140171.00 schema:affiliation grid-institutes:grid.410334.1
159 schema:familyName Cole
160 schema:givenName Jason N. S.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012401140171.00
162 rdf:type schema:Person
163 sg:person.01351266124.78 schema:affiliation grid-institutes:grid.17100.37
164 schema:familyName Lock
165 schema:givenName Adrian P.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01351266124.78
167 rdf:type schema:Person
168 sg:person.01361354435.07 schema:affiliation grid-institutes:grid.237586.d
169 schema:familyName Kawai
170 schema:givenName Hideaki
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361354435.07
172 rdf:type schema:Person
173 sg:person.013647160343.22 schema:affiliation grid-institutes:grid.423115.0
174 schema:familyName Bony
175 schema:givenName Sandrine
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22
177 rdf:type schema:Person
178 sg:person.014601326317.32 schema:affiliation grid-institutes:grid.8653.8
179 schema:familyName Lacagnina
180 schema:givenName Carlo
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014601326317.32
182 rdf:type schema:Person
183 sg:person.015526426755.97 schema:affiliation grid-institutes:grid.423777.2
184 schema:familyName Roehrig
185 schema:givenName Romain
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015526426755.97
187 rdf:type schema:Person
188 sg:person.07423102717.09 schema:affiliation grid-institutes:grid.237586.d
189 schema:familyName Koshiro
190 schema:givenName Tsuyoshi
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07423102717.09
192 rdf:type schema:Person
193 sg:pub.10.1007/s00376-012-2137-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010630312
194 https://doi.org/10.1007/s00376-012-2137-1
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s00382-008-0487-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045325006
197 https://doi.org/10.1007/s00382-008-0487-2
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/s00382-011-1259-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1038094486
200 https://doi.org/10.1007/s00382-011-1259-y
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/s00382-012-1336-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030808219
203 https://doi.org/10.1007/s00382-012-1336-x
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/s00382-012-1411-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035096477
206 https://doi.org/10.1007/s00382-012-1411-3
207 rdf:type schema:CreativeWork
208 sg:pub.10.1007/s00382-013-1725-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028387493
209 https://doi.org/10.1007/s00382-013-1725-9
210 rdf:type schema:CreativeWork
211 sg:pub.10.1007/s00382-014-2093-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053481742
212 https://doi.org/10.1007/s00382-014-2093-9
213 rdf:type schema:CreativeWork
214 sg:pub.10.1007/s003820100157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036889233
215 https://doi.org/10.1007/s003820100157
216 rdf:type schema:CreativeWork
217 grid-institutes:grid.17100.37 schema:alternateName Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK
218 schema:name Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK
219 rdf:type schema:Organization
220 grid-institutes:grid.237586.d schema:alternateName Meteorological Research Institute (MRI), Tsukuba, Japan
221 schema:name Meteorological Research Institute (MRI), Tsukuba, Japan
222 rdf:type schema:Organization
223 grid-institutes:grid.410334.1 schema:alternateName Canadian Centre for Climate Modelling and Analysis (CCCMa), Victoria, BC, Canada
224 schema:name Canadian Centre for Climate Modelling and Analysis (CCCMa), Victoria, BC, Canada
225 rdf:type schema:Organization
226 grid-institutes:grid.423115.0 schema:alternateName Laboratoire de Météorologie Dynamique/Institute Pierre Simon Laplace (IPSL), Paris, France
227 schema:name Laboratoire de Météorologie Dynamique/Institute Pierre Simon Laplace (IPSL), Paris, France
228 rdf:type schema:Organization
229 grid-institutes:grid.423777.2 schema:alternateName Centre National de Recherches Météorologiques (CNRM), Toulouse, France
230 schema:name Centre National de Recherches Météorologiques (CNRM), Toulouse, France
231 rdf:type schema:Organization
232 grid-institutes:grid.450268.d schema:alternateName Max Planck Institute for Meteorology (MPI-M), Hamburg, Germany
233 schema:name Max Planck Institute for Meteorology (MPI-M), Hamburg, Germany
234 rdf:type schema:Organization
235 grid-institutes:grid.8653.8 schema:alternateName The Royal Netherlands Meteorological Institute, (KNMI), De Bilt, The Netherlands
236 schema:name The Royal Netherlands Meteorological Institute, (KNMI), De Bilt, The Netherlands
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...