Irrigation as an historical climate forcing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-06-19

AUTHORS

Benjamin I. Cook, Sonali P. Shukla, Michael J. Puma, Larissa S. Nazarenko

ABSTRACT

Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols, greenhouse gases, etc.) dominate the long term climate evolution in the simulations. To better constrain the magnitude and uncertainties of irrigation-forced climate anomalies, irrigation should therefore be considered as another important anthropogenic climate forcing in the next generation of historical climate simulations and multi-model assessments. More... »

PAGES

1715-1730

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-014-2204-7

DOI

http://dx.doi.org/10.1007/s00382-014-2204-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038976954


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "NASA Goddard Institute for Space Studies, 2880 Broadway, 10025, New York, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.419078.3", 
          "name": [
            "NASA Goddard Institute for Space Studies, 2880 Broadway, 10025, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cook", 
        "givenName": "Benjamin I.", 
        "id": "sg:person.014707472507.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014707472507.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NASA Goddard Institute for Space Studies, 2880 Broadway, 10025, New York, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.419078.3", 
          "name": [
            "NASA Goddard Institute for Space Studies, 2880 Broadway, 10025, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shukla", 
        "givenName": "Sonali P.", 
        "id": "sg:person.015311654305.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015311654305.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Climate Systems Research, Earth Institute, Columbia University, 2880 Broadway, 10025, New York, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Center for Climate Systems Research, Earth Institute, Columbia University, 2880 Broadway, 10025, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Puma", 
        "givenName": "Michael J.", 
        "id": "sg:person.013440272631.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013440272631.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NASA Goddard Institute for Space Studies, 2880 Broadway, 10025, New York, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.419078.3", 
          "name": [
            "NASA Goddard Institute for Space Studies, 2880 Broadway, 10025, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nazarenko", 
        "givenName": "Larissa S.", 
        "id": "sg:person.011275333101.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011275333101.80"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00382-011-1252-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024230710", 
          "https://doi.org/10.1007/s00382-011-1252-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-004-0402-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000675318", 
          "https://doi.org/10.1007/s00382-004-0402-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046726171", 
          "https://doi.org/10.1038/nature10946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-008-0445-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048459767", 
          "https://doi.org/10.1007/s00382-008-0445-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-007-0255-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043104584", 
          "https://doi.org/10.1007/s00382-007-0255-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-010-0932-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015879433", 
          "https://doi.org/10.1007/s00382-010-0932-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045767338", 
          "https://doi.org/10.1038/nature08238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-011-1125-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034862776", 
          "https://doi.org/10.1007/s00382-011-1125-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1786-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029849989", 
          "https://doi.org/10.1007/s00382-013-1786-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005504219", 
          "https://doi.org/10.1038/nature12534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-012-0592-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011873360", 
          "https://doi.org/10.1007/s10584-012-0592-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048475506", 
          "https://doi.org/10.1038/nclimate2196"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-06-19", 
    "datePublishedReg": "2014-06-19", 
    "description": "Abstract\nIrrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols, greenhouse gases, etc.) dominate the long term climate evolution in the simulations. To better constrain the magnitude and uncertainties of irrigation-forced climate anomalies, irrigation should therefore be considered as another important anthropogenic climate forcing in the next generation of historical climate simulations and multi-model assessments.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-014-2204-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3811577", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "keywords": [
      "land surface", 
      "anthropogenic climate", 
      "cloud cover", 
      "global average surface air temperature", 
      "long-term climate evolution", 
      "general circulation model simulations", 
      "average surface air temperature", 
      "historical climate simulations", 
      "monsoon season precipitation", 
      "circulation model simulations", 
      "Model Intercomparison Project", 
      "anthropogenic water use", 
      "surface air temperature", 
      "regional warming trend", 
      "surface energy budget", 
      "large-magnitude shifts", 
      "multi-model assessment", 
      "western North America", 
      "climate evolution", 
      "natural forcings", 
      "GCM experiments", 
      "Intercomparison Project", 
      "anthropogenic forcing", 
      "climate anomalies", 
      "climate simulations", 
      "climate response", 
      "radiative balance", 
      "warming trend", 
      "longwave radiation", 
      "latent heating", 
      "water cycle", 
      "significant cooling", 
      "shortwave reflection", 
      "historical climate", 
      "upward flux", 
      "monsoon Asia", 
      "Bowen ratio", 
      "season precipitation", 
      "irrigation impacts", 
      "model simulations", 
      "net radiation", 
      "climate variables", 
      "version 5", 
      "air temperature", 
      "energy budget", 
      "regional increase", 
      "magnitude shifts", 
      "climate", 
      "precipitation", 
      "importance of irrigation", 
      "water use", 
      "North America", 
      "forcing", 
      "irrigation rate", 
      "irrigation", 
      "cover", 
      "atmosphere", 
      "same region", 
      "cooling", 
      "relative magnitude", 
      "top", 
      "Asia", 
      "magnitude", 
      "Mediterranean", 
      "East", 
      "Middle East", 
      "summer", 
      "anomalies", 
      "budget", 
      "flux", 
      "surface", 
      "land", 
      "water", 
      "temperature", 
      "America", 
      "simulations", 
      "evolution", 
      "radiation", 
      "negligible effect", 
      "uncertainty", 
      "trends", 
      "region", 
      "cycle", 
      "energy availability", 
      "balance", 
      "scenarios", 
      "heating", 
      "part", 
      "dataset", 
      "changes", 
      "impact", 
      "shift", 
      "availability", 
      "ratio", 
      "process", 
      "decrease", 
      "experiments", 
      "project", 
      "importance", 
      "increase", 
      "assessment", 
      "reflection", 
      "generation", 
      "rate", 
      "variables", 
      "response", 
      "setup", 
      "reduction", 
      "next generation", 
      "modification", 
      "effect", 
      "use"
    ], 
    "name": "Irrigation as an historical climate forcing", 
    "pagination": "1715-1730", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038976954"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-014-2204-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-014-2204-7", 
      "https://app.dimensions.ai/details/publication/pub.1038976954"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_634.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-014-2204-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2204-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2204-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2204-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2204-7'


 

This table displays all metadata directly associated to this object as RDF triples.

248 TRIPLES      22 PREDICATES      150 URIs      129 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-014-2204-7 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0406
4 schema:author Nea260ec93ae64b41b5071d4a5bf72b14
5 schema:citation sg:pub.10.1007/s00382-004-0402-4
6 sg:pub.10.1007/s00382-007-0255-8
7 sg:pub.10.1007/s00382-008-0445-z
8 sg:pub.10.1007/s00382-010-0932-x
9 sg:pub.10.1007/s00382-011-1125-y
10 sg:pub.10.1007/s00382-011-1252-5
11 sg:pub.10.1007/s00382-013-1786-9
12 sg:pub.10.1007/s10584-012-0592-4
13 sg:pub.10.1038/nature08238
14 sg:pub.10.1038/nature10946
15 sg:pub.10.1038/nature12534
16 sg:pub.10.1038/nclimate2196
17 schema:datePublished 2014-06-19
18 schema:datePublishedReg 2014-06-19
19 schema:description Abstract Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols, greenhouse gases, etc.) dominate the long term climate evolution in the simulations. To better constrain the magnitude and uncertainties of irrigation-forced climate anomalies, irrigation should therefore be considered as another important anthropogenic climate forcing in the next generation of historical climate simulations and multi-model assessments.
20 schema:genre article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N0701462afcad438a8b923210ea2f0e73
24 Ne0b493d007ad456c96a3970c080bf54d
25 sg:journal.1049631
26 schema:keywords America
27 Asia
28 Bowen ratio
29 East
30 GCM experiments
31 Intercomparison Project
32 Mediterranean
33 Middle East
34 Model Intercomparison Project
35 North America
36 air temperature
37 anomalies
38 anthropogenic climate
39 anthropogenic forcing
40 anthropogenic water use
41 assessment
42 atmosphere
43 availability
44 average surface air temperature
45 balance
46 budget
47 changes
48 circulation model simulations
49 climate
50 climate anomalies
51 climate evolution
52 climate response
53 climate simulations
54 climate variables
55 cloud cover
56 cooling
57 cover
58 cycle
59 dataset
60 decrease
61 effect
62 energy availability
63 energy budget
64 evolution
65 experiments
66 flux
67 forcing
68 general circulation model simulations
69 generation
70 global average surface air temperature
71 heating
72 historical climate
73 historical climate simulations
74 impact
75 importance
76 importance of irrigation
77 increase
78 irrigation
79 irrigation impacts
80 irrigation rate
81 land
82 land surface
83 large-magnitude shifts
84 latent heating
85 long-term climate evolution
86 longwave radiation
87 magnitude
88 magnitude shifts
89 model simulations
90 modification
91 monsoon Asia
92 monsoon season precipitation
93 multi-model assessment
94 natural forcings
95 negligible effect
96 net radiation
97 next generation
98 part
99 precipitation
100 process
101 project
102 radiation
103 radiative balance
104 rate
105 ratio
106 reduction
107 reflection
108 region
109 regional increase
110 regional warming trend
111 relative magnitude
112 response
113 same region
114 scenarios
115 season precipitation
116 setup
117 shift
118 shortwave reflection
119 significant cooling
120 simulations
121 summer
122 surface
123 surface air temperature
124 surface energy budget
125 temperature
126 top
127 trends
128 uncertainty
129 upward flux
130 use
131 variables
132 version 5
133 warming trend
134 water
135 water cycle
136 water use
137 western North America
138 schema:name Irrigation as an historical climate forcing
139 schema:pagination 1715-1730
140 schema:productId N2171cb103edb4cccba83e7b55f1878dc
141 Naab1c03309c04034bccf79eca706cbf9
142 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038976954
143 https://doi.org/10.1007/s00382-014-2204-7
144 schema:sdDatePublished 2022-06-01T22:11
145 schema:sdLicense https://scigraph.springernature.com/explorer/license/
146 schema:sdPublisher N8dfe8261bfc4494c87e4b9d3f6853464
147 schema:url https://doi.org/10.1007/s00382-014-2204-7
148 sgo:license sg:explorer/license/
149 sgo:sdDataset articles
150 rdf:type schema:ScholarlyArticle
151 N0701462afcad438a8b923210ea2f0e73 schema:issueNumber 5-6
152 rdf:type schema:PublicationIssue
153 N2171cb103edb4cccba83e7b55f1878dc schema:name dimensions_id
154 schema:value pub.1038976954
155 rdf:type schema:PropertyValue
156 N59fc8c1eb81e48789405e20e6dd70991 rdf:first sg:person.013440272631.92
157 rdf:rest N85b5fff0583d423dab3901fff100a4eb
158 N6f4a0f95935641858f0ca77fed8aac71 rdf:first sg:person.015311654305.41
159 rdf:rest N59fc8c1eb81e48789405e20e6dd70991
160 N85b5fff0583d423dab3901fff100a4eb rdf:first sg:person.011275333101.80
161 rdf:rest rdf:nil
162 N8dfe8261bfc4494c87e4b9d3f6853464 schema:name Springer Nature - SN SciGraph project
163 rdf:type schema:Organization
164 Naab1c03309c04034bccf79eca706cbf9 schema:name doi
165 schema:value 10.1007/s00382-014-2204-7
166 rdf:type schema:PropertyValue
167 Ne0b493d007ad456c96a3970c080bf54d schema:volumeNumber 44
168 rdf:type schema:PublicationVolume
169 Nea260ec93ae64b41b5071d4a5bf72b14 rdf:first sg:person.014707472507.72
170 rdf:rest N6f4a0f95935641858f0ca77fed8aac71
171 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
172 schema:name Earth Sciences
173 rdf:type schema:DefinedTerm
174 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
175 schema:name Atmospheric Sciences
176 rdf:type schema:DefinedTerm
177 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
178 schema:name Physical Geography and Environmental Geoscience
179 rdf:type schema:DefinedTerm
180 sg:grant.3811577 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-014-2204-7
181 rdf:type schema:MonetaryGrant
182 sg:journal.1049631 schema:issn 0930-7575
183 1432-0894
184 schema:name Climate Dynamics
185 schema:publisher Springer Nature
186 rdf:type schema:Periodical
187 sg:person.011275333101.80 schema:affiliation grid-institutes:grid.419078.3
188 schema:familyName Nazarenko
189 schema:givenName Larissa S.
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011275333101.80
191 rdf:type schema:Person
192 sg:person.013440272631.92 schema:affiliation grid-institutes:grid.21729.3f
193 schema:familyName Puma
194 schema:givenName Michael J.
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013440272631.92
196 rdf:type schema:Person
197 sg:person.014707472507.72 schema:affiliation grid-institutes:grid.419078.3
198 schema:familyName Cook
199 schema:givenName Benjamin I.
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014707472507.72
201 rdf:type schema:Person
202 sg:person.015311654305.41 schema:affiliation grid-institutes:grid.419078.3
203 schema:familyName Shukla
204 schema:givenName Sonali P.
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015311654305.41
206 rdf:type schema:Person
207 sg:pub.10.1007/s00382-004-0402-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000675318
208 https://doi.org/10.1007/s00382-004-0402-4
209 rdf:type schema:CreativeWork
210 sg:pub.10.1007/s00382-007-0255-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043104584
211 https://doi.org/10.1007/s00382-007-0255-8
212 rdf:type schema:CreativeWork
213 sg:pub.10.1007/s00382-008-0445-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1048459767
214 https://doi.org/10.1007/s00382-008-0445-z
215 rdf:type schema:CreativeWork
216 sg:pub.10.1007/s00382-010-0932-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015879433
217 https://doi.org/10.1007/s00382-010-0932-x
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/s00382-011-1125-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1034862776
220 https://doi.org/10.1007/s00382-011-1125-y
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/s00382-011-1252-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024230710
223 https://doi.org/10.1007/s00382-011-1252-5
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/s00382-013-1786-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029849989
226 https://doi.org/10.1007/s00382-013-1786-9
227 rdf:type schema:CreativeWork
228 sg:pub.10.1007/s10584-012-0592-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011873360
229 https://doi.org/10.1007/s10584-012-0592-4
230 rdf:type schema:CreativeWork
231 sg:pub.10.1038/nature08238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045767338
232 https://doi.org/10.1038/nature08238
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/nature10946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046726171
235 https://doi.org/10.1038/nature10946
236 rdf:type schema:CreativeWork
237 sg:pub.10.1038/nature12534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005504219
238 https://doi.org/10.1038/nature12534
239 rdf:type schema:CreativeWork
240 sg:pub.10.1038/nclimate2196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048475506
241 https://doi.org/10.1038/nclimate2196
242 rdf:type schema:CreativeWork
243 grid-institutes:grid.21729.3f schema:alternateName Center for Climate Systems Research, Earth Institute, Columbia University, 2880 Broadway, 10025, New York, NY, USA
244 schema:name Center for Climate Systems Research, Earth Institute, Columbia University, 2880 Broadway, 10025, New York, NY, USA
245 rdf:type schema:Organization
246 grid-institutes:grid.419078.3 schema:alternateName NASA Goddard Institute for Space Studies, 2880 Broadway, 10025, New York, NY, USA
247 schema:name NASA Goddard Institute for Space Studies, 2880 Broadway, 10025, New York, NY, USA
248 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...