Ontology type: schema:ScholarlyArticle Open Access: True
2014-06-19
AUTHORSBenjamin I. Cook, Sonali P. Shukla, Michael J. Puma, Larissa S. Nazarenko
ABSTRACTIrrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols, greenhouse gases, etc.) dominate the long term climate evolution in the simulations. To better constrain the magnitude and uncertainties of irrigation-forced climate anomalies, irrigation should therefore be considered as another important anthropogenic climate forcing in the next generation of historical climate simulations and multi-model assessments. More... »
PAGES1715-1730
http://scigraph.springernature.com/pub.10.1007/s00382-014-2204-7
DOIhttp://dx.doi.org/10.1007/s00382-014-2204-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1038976954
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atmospheric Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Geography and Environmental Geoscience",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "NASA Goddard Institute for Space Studies, 2880 Broadway, 10025, New York, NY, USA",
"id": "http://www.grid.ac/institutes/grid.419078.3",
"name": [
"NASA Goddard Institute for Space Studies, 2880 Broadway, 10025, New York, NY, USA"
],
"type": "Organization"
},
"familyName": "Cook",
"givenName": "Benjamin I.",
"id": "sg:person.014707472507.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014707472507.72"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "NASA Goddard Institute for Space Studies, 2880 Broadway, 10025, New York, NY, USA",
"id": "http://www.grid.ac/institutes/grid.419078.3",
"name": [
"NASA Goddard Institute for Space Studies, 2880 Broadway, 10025, New York, NY, USA"
],
"type": "Organization"
},
"familyName": "Shukla",
"givenName": "Sonali P.",
"id": "sg:person.015311654305.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015311654305.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Center for Climate Systems Research, Earth Institute, Columbia University, 2880 Broadway, 10025, New York, NY, USA",
"id": "http://www.grid.ac/institutes/grid.21729.3f",
"name": [
"Center for Climate Systems Research, Earth Institute, Columbia University, 2880 Broadway, 10025, New York, NY, USA"
],
"type": "Organization"
},
"familyName": "Puma",
"givenName": "Michael J.",
"id": "sg:person.013440272631.92",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013440272631.92"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "NASA Goddard Institute for Space Studies, 2880 Broadway, 10025, New York, NY, USA",
"id": "http://www.grid.ac/institutes/grid.419078.3",
"name": [
"NASA Goddard Institute for Space Studies, 2880 Broadway, 10025, New York, NY, USA"
],
"type": "Organization"
},
"familyName": "Nazarenko",
"givenName": "Larissa S.",
"id": "sg:person.011275333101.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011275333101.80"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00382-011-1252-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024230710",
"https://doi.org/10.1007/s00382-011-1252-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-004-0402-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000675318",
"https://doi.org/10.1007/s00382-004-0402-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature10946",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046726171",
"https://doi.org/10.1038/nature10946"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-008-0445-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048459767",
"https://doi.org/10.1007/s00382-008-0445-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-007-0255-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043104584",
"https://doi.org/10.1007/s00382-007-0255-8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-010-0932-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015879433",
"https://doi.org/10.1007/s00382-010-0932-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature08238",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045767338",
"https://doi.org/10.1038/nature08238"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-011-1125-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034862776",
"https://doi.org/10.1007/s00382-011-1125-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-013-1786-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029849989",
"https://doi.org/10.1007/s00382-013-1786-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature12534",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005504219",
"https://doi.org/10.1038/nature12534"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10584-012-0592-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011873360",
"https://doi.org/10.1007/s10584-012-0592-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nclimate2196",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048475506",
"https://doi.org/10.1038/nclimate2196"
],
"type": "CreativeWork"
}
],
"datePublished": "2014-06-19",
"datePublishedReg": "2014-06-19",
"description": "Abstract\nIrrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols, greenhouse gases, etc.) dominate the long term climate evolution in the simulations. To better constrain the magnitude and uncertainties of irrigation-forced climate anomalies, irrigation should therefore be considered as another important anthropogenic climate forcing in the next generation of historical climate simulations and multi-model assessments.",
"genre": "article",
"id": "sg:pub.10.1007/s00382-014-2204-7",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.3811577",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1049631",
"issn": [
"0930-7575",
"1432-0894"
],
"name": "Climate Dynamics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "5-6",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "44"
}
],
"keywords": [
"land surface",
"anthropogenic climate",
"cloud cover",
"global average surface air temperature",
"long-term climate evolution",
"general circulation model simulations",
"average surface air temperature",
"historical climate simulations",
"monsoon season precipitation",
"circulation model simulations",
"Model Intercomparison Project",
"anthropogenic water use",
"surface air temperature",
"regional warming trend",
"surface energy budget",
"large-magnitude shifts",
"multi-model assessment",
"western North America",
"climate evolution",
"natural forcings",
"GCM experiments",
"Intercomparison Project",
"anthropogenic forcing",
"climate anomalies",
"climate simulations",
"climate response",
"radiative balance",
"warming trend",
"longwave radiation",
"latent heating",
"water cycle",
"significant cooling",
"shortwave reflection",
"historical climate",
"upward flux",
"monsoon Asia",
"Bowen ratio",
"season precipitation",
"irrigation impacts",
"model simulations",
"net radiation",
"climate variables",
"version 5",
"air temperature",
"energy budget",
"regional increase",
"magnitude shifts",
"climate",
"precipitation",
"importance of irrigation",
"water use",
"North America",
"forcing",
"irrigation rate",
"irrigation",
"cover",
"atmosphere",
"same region",
"cooling",
"relative magnitude",
"top",
"Asia",
"magnitude",
"Mediterranean",
"East",
"Middle East",
"summer",
"anomalies",
"budget",
"flux",
"surface",
"land",
"water",
"temperature",
"America",
"simulations",
"evolution",
"radiation",
"negligible effect",
"uncertainty",
"trends",
"region",
"cycle",
"energy availability",
"balance",
"scenarios",
"heating",
"part",
"dataset",
"changes",
"impact",
"shift",
"availability",
"ratio",
"process",
"decrease",
"experiments",
"project",
"importance",
"increase",
"assessment",
"reflection",
"generation",
"rate",
"variables",
"response",
"setup",
"reduction",
"next generation",
"modification",
"effect",
"use"
],
"name": "Irrigation as an historical climate forcing",
"pagination": "1715-1730",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1038976954"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00382-014-2204-7"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00382-014-2204-7",
"https://app.dimensions.ai/details/publication/pub.1038976954"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:11",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_634.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00382-014-2204-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2204-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2204-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2204-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2204-7'
This table displays all metadata directly associated to this object as RDF triples.
248 TRIPLES
22 PREDICATES
150 URIs
129 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00382-014-2204-7 | schema:about | anzsrc-for:04 |
2 | ″ | ″ | anzsrc-for:0401 |
3 | ″ | ″ | anzsrc-for:0406 |
4 | ″ | schema:author | Nb617ef5ac93d461881616b535150abe3 |
5 | ″ | schema:citation | sg:pub.10.1007/s00382-004-0402-4 |
6 | ″ | ″ | sg:pub.10.1007/s00382-007-0255-8 |
7 | ″ | ″ | sg:pub.10.1007/s00382-008-0445-z |
8 | ″ | ″ | sg:pub.10.1007/s00382-010-0932-x |
9 | ″ | ″ | sg:pub.10.1007/s00382-011-1125-y |
10 | ″ | ″ | sg:pub.10.1007/s00382-011-1252-5 |
11 | ″ | ″ | sg:pub.10.1007/s00382-013-1786-9 |
12 | ″ | ″ | sg:pub.10.1007/s10584-012-0592-4 |
13 | ″ | ″ | sg:pub.10.1038/nature08238 |
14 | ″ | ″ | sg:pub.10.1038/nature10946 |
15 | ″ | ″ | sg:pub.10.1038/nature12534 |
16 | ″ | ″ | sg:pub.10.1038/nclimate2196 |
17 | ″ | schema:datePublished | 2014-06-19 |
18 | ″ | schema:datePublishedReg | 2014-06-19 |
19 | ″ | schema:description | Abstract Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols, greenhouse gases, etc.) dominate the long term climate evolution in the simulations. To better constrain the magnitude and uncertainties of irrigation-forced climate anomalies, irrigation should therefore be considered as another important anthropogenic climate forcing in the next generation of historical climate simulations and multi-model assessments. |
20 | ″ | schema:genre | article |
21 | ″ | schema:inLanguage | en |
22 | ″ | schema:isAccessibleForFree | true |
23 | ″ | schema:isPartOf | N6ea40898b67b491f8c10a81f9c89a3ca |
24 | ″ | ″ | Nffc1caef48194fe9847a6abe3a0add24 |
25 | ″ | ″ | sg:journal.1049631 |
26 | ″ | schema:keywords | America |
27 | ″ | ″ | Asia |
28 | ″ | ″ | Bowen ratio |
29 | ″ | ″ | East |
30 | ″ | ″ | GCM experiments |
31 | ″ | ″ | Intercomparison Project |
32 | ″ | ″ | Mediterranean |
33 | ″ | ″ | Middle East |
34 | ″ | ″ | Model Intercomparison Project |
35 | ″ | ″ | North America |
36 | ″ | ″ | air temperature |
37 | ″ | ″ | anomalies |
38 | ″ | ″ | anthropogenic climate |
39 | ″ | ″ | anthropogenic forcing |
40 | ″ | ″ | anthropogenic water use |
41 | ″ | ″ | assessment |
42 | ″ | ″ | atmosphere |
43 | ″ | ″ | availability |
44 | ″ | ″ | average surface air temperature |
45 | ″ | ″ | balance |
46 | ″ | ″ | budget |
47 | ″ | ″ | changes |
48 | ″ | ″ | circulation model simulations |
49 | ″ | ″ | climate |
50 | ″ | ″ | climate anomalies |
51 | ″ | ″ | climate evolution |
52 | ″ | ″ | climate response |
53 | ″ | ″ | climate simulations |
54 | ″ | ″ | climate variables |
55 | ″ | ″ | cloud cover |
56 | ″ | ″ | cooling |
57 | ″ | ″ | cover |
58 | ″ | ″ | cycle |
59 | ″ | ″ | dataset |
60 | ″ | ″ | decrease |
61 | ″ | ″ | effect |
62 | ″ | ″ | energy availability |
63 | ″ | ″ | energy budget |
64 | ″ | ″ | evolution |
65 | ″ | ″ | experiments |
66 | ″ | ″ | flux |
67 | ″ | ″ | forcing |
68 | ″ | ″ | general circulation model simulations |
69 | ″ | ″ | generation |
70 | ″ | ″ | global average surface air temperature |
71 | ″ | ″ | heating |
72 | ″ | ″ | historical climate |
73 | ″ | ″ | historical climate simulations |
74 | ″ | ″ | impact |
75 | ″ | ″ | importance |
76 | ″ | ″ | importance of irrigation |
77 | ″ | ″ | increase |
78 | ″ | ″ | irrigation |
79 | ″ | ″ | irrigation impacts |
80 | ″ | ″ | irrigation rate |
81 | ″ | ″ | land |
82 | ″ | ″ | land surface |
83 | ″ | ″ | large-magnitude shifts |
84 | ″ | ″ | latent heating |
85 | ″ | ″ | long-term climate evolution |
86 | ″ | ″ | longwave radiation |
87 | ″ | ″ | magnitude |
88 | ″ | ″ | magnitude shifts |
89 | ″ | ″ | model simulations |
90 | ″ | ″ | modification |
91 | ″ | ″ | monsoon Asia |
92 | ″ | ″ | monsoon season precipitation |
93 | ″ | ″ | multi-model assessment |
94 | ″ | ″ | natural forcings |
95 | ″ | ″ | negligible effect |
96 | ″ | ″ | net radiation |
97 | ″ | ″ | next generation |
98 | ″ | ″ | part |
99 | ″ | ″ | precipitation |
100 | ″ | ″ | process |
101 | ″ | ″ | project |
102 | ″ | ″ | radiation |
103 | ″ | ″ | radiative balance |
104 | ″ | ″ | rate |
105 | ″ | ″ | ratio |
106 | ″ | ″ | reduction |
107 | ″ | ″ | reflection |
108 | ″ | ″ | region |
109 | ″ | ″ | regional increase |
110 | ″ | ″ | regional warming trend |
111 | ″ | ″ | relative magnitude |
112 | ″ | ″ | response |
113 | ″ | ″ | same region |
114 | ″ | ″ | scenarios |
115 | ″ | ″ | season precipitation |
116 | ″ | ″ | setup |
117 | ″ | ″ | shift |
118 | ″ | ″ | shortwave reflection |
119 | ″ | ″ | significant cooling |
120 | ″ | ″ | simulations |
121 | ″ | ″ | summer |
122 | ″ | ″ | surface |
123 | ″ | ″ | surface air temperature |
124 | ″ | ″ | surface energy budget |
125 | ″ | ″ | temperature |
126 | ″ | ″ | top |
127 | ″ | ″ | trends |
128 | ″ | ″ | uncertainty |
129 | ″ | ″ | upward flux |
130 | ″ | ″ | use |
131 | ″ | ″ | variables |
132 | ″ | ″ | version 5 |
133 | ″ | ″ | warming trend |
134 | ″ | ″ | water |
135 | ″ | ″ | water cycle |
136 | ″ | ″ | water use |
137 | ″ | ″ | western North America |
138 | ″ | schema:name | Irrigation as an historical climate forcing |
139 | ″ | schema:pagination | 1715-1730 |
140 | ″ | schema:productId | N1b062f91c5a245be8b1088320fe6c99f |
141 | ″ | ″ | Nb1880dac93854486b8b5cfd5dd79b795 |
142 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1038976954 |
143 | ″ | ″ | https://doi.org/10.1007/s00382-014-2204-7 |
144 | ″ | schema:sdDatePublished | 2022-06-01T22:11 |
145 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
146 | ″ | schema:sdPublisher | N55f02037f49844ac8dfdd85a84593836 |
147 | ″ | schema:url | https://doi.org/10.1007/s00382-014-2204-7 |
148 | ″ | sgo:license | sg:explorer/license/ |
149 | ″ | sgo:sdDataset | articles |
150 | ″ | rdf:type | schema:ScholarlyArticle |
151 | N1b062f91c5a245be8b1088320fe6c99f | schema:name | dimensions_id |
152 | ″ | schema:value | pub.1038976954 |
153 | ″ | rdf:type | schema:PropertyValue |
154 | N37afd3ba4f154e40af8837fe2e460a73 | rdf:first | sg:person.015311654305.41 |
155 | ″ | rdf:rest | Nc28762f35c9c4893ac8f1f16e6fd23cb |
156 | N55f02037f49844ac8dfdd85a84593836 | schema:name | Springer Nature - SN SciGraph project |
157 | ″ | rdf:type | schema:Organization |
158 | N6ea40898b67b491f8c10a81f9c89a3ca | schema:issueNumber | 5-6 |
159 | ″ | rdf:type | schema:PublicationIssue |
160 | Nb1880dac93854486b8b5cfd5dd79b795 | schema:name | doi |
161 | ″ | schema:value | 10.1007/s00382-014-2204-7 |
162 | ″ | rdf:type | schema:PropertyValue |
163 | Nb617ef5ac93d461881616b535150abe3 | rdf:first | sg:person.014707472507.72 |
164 | ″ | rdf:rest | N37afd3ba4f154e40af8837fe2e460a73 |
165 | Nc28762f35c9c4893ac8f1f16e6fd23cb | rdf:first | sg:person.013440272631.92 |
166 | ″ | rdf:rest | Nc56f1443d8ee4c2ca5dccad2f0e369f6 |
167 | Nc56f1443d8ee4c2ca5dccad2f0e369f6 | rdf:first | sg:person.011275333101.80 |
168 | ″ | rdf:rest | rdf:nil |
169 | Nffc1caef48194fe9847a6abe3a0add24 | schema:volumeNumber | 44 |
170 | ″ | rdf:type | schema:PublicationVolume |
171 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
172 | ″ | schema:name | Earth Sciences |
173 | ″ | rdf:type | schema:DefinedTerm |
174 | anzsrc-for:0401 | schema:inDefinedTermSet | anzsrc-for: |
175 | ″ | schema:name | Atmospheric Sciences |
176 | ″ | rdf:type | schema:DefinedTerm |
177 | anzsrc-for:0406 | schema:inDefinedTermSet | anzsrc-for: |
178 | ″ | schema:name | Physical Geography and Environmental Geoscience |
179 | ″ | rdf:type | schema:DefinedTerm |
180 | sg:grant.3811577 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s00382-014-2204-7 |
181 | ″ | rdf:type | schema:MonetaryGrant |
182 | sg:journal.1049631 | schema:issn | 0930-7575 |
183 | ″ | ″ | 1432-0894 |
184 | ″ | schema:name | Climate Dynamics |
185 | ″ | schema:publisher | Springer Nature |
186 | ″ | rdf:type | schema:Periodical |
187 | sg:person.011275333101.80 | schema:affiliation | grid-institutes:grid.419078.3 |
188 | ″ | schema:familyName | Nazarenko |
189 | ″ | schema:givenName | Larissa S. |
190 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011275333101.80 |
191 | ″ | rdf:type | schema:Person |
192 | sg:person.013440272631.92 | schema:affiliation | grid-institutes:grid.21729.3f |
193 | ″ | schema:familyName | Puma |
194 | ″ | schema:givenName | Michael J. |
195 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013440272631.92 |
196 | ″ | rdf:type | schema:Person |
197 | sg:person.014707472507.72 | schema:affiliation | grid-institutes:grid.419078.3 |
198 | ″ | schema:familyName | Cook |
199 | ″ | schema:givenName | Benjamin I. |
200 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014707472507.72 |
201 | ″ | rdf:type | schema:Person |
202 | sg:person.015311654305.41 | schema:affiliation | grid-institutes:grid.419078.3 |
203 | ″ | schema:familyName | Shukla |
204 | ″ | schema:givenName | Sonali P. |
205 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015311654305.41 |
206 | ″ | rdf:type | schema:Person |
207 | sg:pub.10.1007/s00382-004-0402-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1000675318 |
208 | ″ | ″ | https://doi.org/10.1007/s00382-004-0402-4 |
209 | ″ | rdf:type | schema:CreativeWork |
210 | sg:pub.10.1007/s00382-007-0255-8 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1043104584 |
211 | ″ | ″ | https://doi.org/10.1007/s00382-007-0255-8 |
212 | ″ | rdf:type | schema:CreativeWork |
213 | sg:pub.10.1007/s00382-008-0445-z | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1048459767 |
214 | ″ | ″ | https://doi.org/10.1007/s00382-008-0445-z |
215 | ″ | rdf:type | schema:CreativeWork |
216 | sg:pub.10.1007/s00382-010-0932-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1015879433 |
217 | ″ | ″ | https://doi.org/10.1007/s00382-010-0932-x |
218 | ″ | rdf:type | schema:CreativeWork |
219 | sg:pub.10.1007/s00382-011-1125-y | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1034862776 |
220 | ″ | ″ | https://doi.org/10.1007/s00382-011-1125-y |
221 | ″ | rdf:type | schema:CreativeWork |
222 | sg:pub.10.1007/s00382-011-1252-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1024230710 |
223 | ″ | ″ | https://doi.org/10.1007/s00382-011-1252-5 |
224 | ″ | rdf:type | schema:CreativeWork |
225 | sg:pub.10.1007/s00382-013-1786-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1029849989 |
226 | ″ | ″ | https://doi.org/10.1007/s00382-013-1786-9 |
227 | ″ | rdf:type | schema:CreativeWork |
228 | sg:pub.10.1007/s10584-012-0592-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1011873360 |
229 | ″ | ″ | https://doi.org/10.1007/s10584-012-0592-4 |
230 | ″ | rdf:type | schema:CreativeWork |
231 | sg:pub.10.1038/nature08238 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1045767338 |
232 | ″ | ″ | https://doi.org/10.1038/nature08238 |
233 | ″ | rdf:type | schema:CreativeWork |
234 | sg:pub.10.1038/nature10946 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1046726171 |
235 | ″ | ″ | https://doi.org/10.1038/nature10946 |
236 | ″ | rdf:type | schema:CreativeWork |
237 | sg:pub.10.1038/nature12534 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1005504219 |
238 | ″ | ″ | https://doi.org/10.1038/nature12534 |
239 | ″ | rdf:type | schema:CreativeWork |
240 | sg:pub.10.1038/nclimate2196 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1048475506 |
241 | ″ | ″ | https://doi.org/10.1038/nclimate2196 |
242 | ″ | rdf:type | schema:CreativeWork |
243 | grid-institutes:grid.21729.3f | schema:alternateName | Center for Climate Systems Research, Earth Institute, Columbia University, 2880 Broadway, 10025, New York, NY, USA |
244 | ″ | schema:name | Center for Climate Systems Research, Earth Institute, Columbia University, 2880 Broadway, 10025, New York, NY, USA |
245 | ″ | rdf:type | schema:Organization |
246 | grid-institutes:grid.419078.3 | schema:alternateName | NASA Goddard Institute for Space Studies, 2880 Broadway, 10025, New York, NY, USA |
247 | ″ | schema:name | NASA Goddard Institute for Space Studies, 2880 Broadway, 10025, New York, NY, USA |
248 | ″ | rdf:type | schema:Organization |