Strategies for reducing the climate noise in model simulations: ensemble runs versus a long continuous run View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-03

AUTHORS

Damien Decremer, Chul E. Chung, Petri Räisänen

ABSTRACT

Climate modelers often integrate the model with constant forcing over a long time period, and make an average over the period in order to reduce climate noise. If the time series is persistent, as opposed to rapidly varying, such an average does not reduce noise efficiently. In this case, ensemble runs, which ideally represent independent runs, can reduce noise more efficiently. We quantify the noise reduction gain by using ensemble runs over a long continuous run in constant‐forcing simulations. We find that in terms of the amplitude of the noise, a continuous simulation of 30 years may be equivalent to as few as five 3-year long ensemble runs in a slab ocean–atmosphere coupled model and as few as two 3-year long ensemble runs in a fully coupled model. The outperformance of ensemble runs over a continuous run is strictly a function of the persistence of the time series. We find that persistence depends on model, location and variable, and that persistence in surface air temperature has robust spatial structures in coupled models. We demonstrate that lag-1 year autocorrelation represents persistence fairly well, but the use of lag-1 year–lag-5 years autocorrelations represents the persistence far more sufficiently. Furthermore, there is more persistence in coupled model output than in the output of a first-order autoregressive model with the same lag-1 autocorrelation. More... »

PAGES

1367-1379

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-014-2161-1

DOI

http://dx.doi.org/10.1007/s00382-014-2161-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043870953


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Gwangju Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.61221.36", 
          "name": [
            "Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Decremer", 
        "givenName": "Damien", 
        "id": "sg:person.01340201215.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340201215.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Gwangju Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.61221.36", 
          "name": [
            "Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chung", 
        "givenName": "Chul E.", 
        "id": "sg:person.012515511063.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012515511063.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Finnish Meteorological Institute", 
          "id": "https://www.grid.ac/institutes/grid.8657.c", 
          "name": [
            "Finnish Meteorological Institute, Helsinki, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "R\u00e4is\u00e4nen", 
        "givenName": "Petri", 
        "id": "sg:person.011772204171.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011772204171.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/1520-0442(1998)011<1455:cdiami>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001864472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-010-0898-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006967155", 
          "https://doi.org/10.1007/s00382-010-0898-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2003)16<1378:ttmeaa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010530699"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820000079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012213043", 
          "https://doi.org/10.1007/s003820000079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2002)015<2462:eotsaa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012861913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1984)112<2359:seofss>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013125238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.652", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013552741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015197825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3820.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016648194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176347265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017576273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0870.2005.00132.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018237983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0870.2005.00132.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018237983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-004-0416-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018333666", 
          "https://doi.org/10.1007/s00382-004-0416-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-004-0416-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018333666", 
          "https://doi.org/10.1007/s00382-004-0416-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3824.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019857303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-010-0977-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021861148", 
          "https://doi.org/10.1007/s00382-010-0977-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1997)010<0065:rhtfaf>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022811882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(1973)012<1066:tseota>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022853495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/cp-8-433-2012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026188004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1997)125<3297:efanat>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028289719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-009-0664-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028771416", 
          "https://doi.org/10.1007/s00382-009-0664-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-009-0664-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028771416", 
          "https://doi.org/10.1007/s00382-009-0664-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-009-0664-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028771416", 
          "https://doi.org/10.1007/s00382-009-0664-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0477(2001)082<2377:esotfc>2.3.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030538581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3537.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036151970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3537.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036151970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-7-2503-2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040567083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0485(1984)014<0666:atcteo>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041983275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047124803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047124803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1995)008<0336:tsciai>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047275102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0802430105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051795875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3747.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053653975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5461.2246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062568869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jcli2596.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063454059"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-03", 
    "datePublishedReg": "2015-03-01", 
    "description": "Climate modelers often integrate the model with constant forcing over a long time period, and make an average over the period in order to reduce climate noise. If the time series is persistent, as opposed to rapidly varying, such an average does not reduce noise efficiently. In this case, ensemble runs, which ideally represent independent runs, can reduce noise more efficiently. We quantify the noise reduction gain by using ensemble runs over a long continuous run in constant\u2010forcing simulations. We find that in terms of the amplitude of the noise, a continuous simulation of 30 years may be equivalent to as few as five 3-year long ensemble runs in a slab ocean\u2013atmosphere coupled model and as few as two 3-year long ensemble runs in a fully coupled model. The outperformance of ensemble runs over a continuous run is strictly a function of the persistence of the time series. We find that persistence depends on model, location and variable, and that persistence in surface air temperature has robust spatial structures in coupled models. We demonstrate that lag-1 year autocorrelation represents persistence fairly well, but the use of lag-1 year\u2013lag-5 years autocorrelations represents the persistence far more sufficiently. Furthermore, there is more persistence in coupled model output than in the output of a first-order autoregressive model with the same lag-1 autocorrelation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00382-014-2161-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "Strategies for reducing the climate noise in model simulations: ensemble runs versus a long continuous run", 
    "pagination": "1367-1379", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d0f9898bd2e3c0ad50f92999174449f1e9ff759ae464e7a1c4d610b21be8a781"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-014-2161-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043870953"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-014-2161-1", 
      "https://app.dimensions.ai/details/publication/pub.1043870953"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000482.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00382-014-2161-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2161-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2161-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2161-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2161-1'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-014-2161-1 schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author N3689681167c049009b0ef55967ead17d
4 schema:citation sg:pub.10.1007/s00382-004-0416-y
5 sg:pub.10.1007/s00382-009-0664-y
6 sg:pub.10.1007/s00382-010-0898-8
7 sg:pub.10.1007/s00382-010-0977-x
8 sg:pub.10.1007/s003820000079
9 https://doi.org/10.1002/qj.231
10 https://doi.org/10.1002/qj.652
11 https://doi.org/10.1002/qj.674
12 https://doi.org/10.1073/pnas.0802430105
13 https://doi.org/10.1111/j.1600-0870.2005.00132.x
14 https://doi.org/10.1126/science.287.5461.2246
15 https://doi.org/10.1175/1520-0442(1995)008<0336:tsciai>2.0.co;2
16 https://doi.org/10.1175/1520-0442(1997)010<0065:rhtfaf>2.0.co;2
17 https://doi.org/10.1175/1520-0442(1998)011<1455:cdiami>2.0.co;2
18 https://doi.org/10.1175/1520-0442(2002)015<2462:eotsaa>2.0.co;2
19 https://doi.org/10.1175/1520-0442(2003)16<1378:ttmeaa>2.0.co;2
20 https://doi.org/10.1175/1520-0450(1973)012<1066:tseota>2.0.co;2
21 https://doi.org/10.1175/1520-0477(2001)082<2377:esotfc>2.3.co;2
22 https://doi.org/10.1175/1520-0485(1984)014<0666:atcteo>2.0.co;2
23 https://doi.org/10.1175/1520-0493(1984)112<2359:seofss>2.0.co;2
24 https://doi.org/10.1175/1520-0493(1997)125<3297:efanat>2.0.co;2
25 https://doi.org/10.1175/2008jcli2596.1
26 https://doi.org/10.1175/jcli3537.1
27 https://doi.org/10.1175/jcli3747.1
28 https://doi.org/10.1175/jcli3820.1
29 https://doi.org/10.1175/jcli3824.1
30 https://doi.org/10.1214/aos/1176347265
31 https://doi.org/10.5194/acp-7-2503-2007
32 https://doi.org/10.5194/cp-8-433-2012
33 schema:datePublished 2015-03
34 schema:datePublishedReg 2015-03-01
35 schema:description Climate modelers often integrate the model with constant forcing over a long time period, and make an average over the period in order to reduce climate noise. If the time series is persistent, as opposed to rapidly varying, such an average does not reduce noise efficiently. In this case, ensemble runs, which ideally represent independent runs, can reduce noise more efficiently. We quantify the noise reduction gain by using ensemble runs over a long continuous run in constant‐forcing simulations. We find that in terms of the amplitude of the noise, a continuous simulation of 30 years may be equivalent to as few as five 3-year long ensemble runs in a slab ocean–atmosphere coupled model and as few as two 3-year long ensemble runs in a fully coupled model. The outperformance of ensemble runs over a continuous run is strictly a function of the persistence of the time series. We find that persistence depends on model, location and variable, and that persistence in surface air temperature has robust spatial structures in coupled models. We demonstrate that lag-1 year autocorrelation represents persistence fairly well, but the use of lag-1 year–lag-5 years autocorrelations represents the persistence far more sufficiently. Furthermore, there is more persistence in coupled model output than in the output of a first-order autoregressive model with the same lag-1 autocorrelation.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N8db0b88f6ebc4b5e9035f20fac0f2fd9
40 Na0994927156c422ca111573675c865c3
41 sg:journal.1049631
42 schema:name Strategies for reducing the climate noise in model simulations: ensemble runs versus a long continuous run
43 schema:pagination 1367-1379
44 schema:productId N48ebfd1db4f1425b8a25b76bbc650a0e
45 N68f5dee923c04ebf8e7f1edd47126abe
46 N9b7c0700306b470cbe4d939bfb09d2a2
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043870953
48 https://doi.org/10.1007/s00382-014-2161-1
49 schema:sdDatePublished 2019-04-10T22:24
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Ne0addeda6969440db69cd23276ff72fa
52 schema:url http://link.springer.com/10.1007/s00382-014-2161-1
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N3689681167c049009b0ef55967ead17d rdf:first sg:person.01340201215.37
57 rdf:rest N6c39acbb7ed041afaaf030c334dfb2bb
58 N48ebfd1db4f1425b8a25b76bbc650a0e schema:name doi
59 schema:value 10.1007/s00382-014-2161-1
60 rdf:type schema:PropertyValue
61 N68f5dee923c04ebf8e7f1edd47126abe schema:name dimensions_id
62 schema:value pub.1043870953
63 rdf:type schema:PropertyValue
64 N6c39acbb7ed041afaaf030c334dfb2bb rdf:first sg:person.012515511063.15
65 rdf:rest Na6a5e0ba8fd946e3a90b5e0c60c7ca36
66 N8db0b88f6ebc4b5e9035f20fac0f2fd9 schema:volumeNumber 44
67 rdf:type schema:PublicationVolume
68 N9b7c0700306b470cbe4d939bfb09d2a2 schema:name readcube_id
69 schema:value d0f9898bd2e3c0ad50f92999174449f1e9ff759ae464e7a1c4d610b21be8a781
70 rdf:type schema:PropertyValue
71 Na0994927156c422ca111573675c865c3 schema:issueNumber 5-6
72 rdf:type schema:PublicationIssue
73 Na6a5e0ba8fd946e3a90b5e0c60c7ca36 rdf:first sg:person.011772204171.47
74 rdf:rest rdf:nil
75 Ne0addeda6969440db69cd23276ff72fa schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
78 schema:name Earth Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
81 schema:name Oceanography
82 rdf:type schema:DefinedTerm
83 sg:journal.1049631 schema:issn 0930-7575
84 1432-0894
85 schema:name Climate Dynamics
86 rdf:type schema:Periodical
87 sg:person.011772204171.47 schema:affiliation https://www.grid.ac/institutes/grid.8657.c
88 schema:familyName Räisänen
89 schema:givenName Petri
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011772204171.47
91 rdf:type schema:Person
92 sg:person.012515511063.15 schema:affiliation https://www.grid.ac/institutes/grid.61221.36
93 schema:familyName Chung
94 schema:givenName Chul E.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012515511063.15
96 rdf:type schema:Person
97 sg:person.01340201215.37 schema:affiliation https://www.grid.ac/institutes/grid.61221.36
98 schema:familyName Decremer
99 schema:givenName Damien
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340201215.37
101 rdf:type schema:Person
102 sg:pub.10.1007/s00382-004-0416-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1018333666
103 https://doi.org/10.1007/s00382-004-0416-y
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s00382-009-0664-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1028771416
106 https://doi.org/10.1007/s00382-009-0664-y
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s00382-010-0898-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006967155
109 https://doi.org/10.1007/s00382-010-0898-8
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s00382-010-0977-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021861148
112 https://doi.org/10.1007/s00382-010-0977-x
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/s003820000079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012213043
115 https://doi.org/10.1007/s003820000079
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1002/qj.231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015197825
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/qj.652 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013552741
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/qj.674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047124803
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1073/pnas.0802430105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051795875
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1111/j.1600-0870.2005.00132.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018237983
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1126/science.287.5461.2246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568869
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1175/1520-0442(1995)008<0336:tsciai>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047275102
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1175/1520-0442(1997)010<0065:rhtfaf>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022811882
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1175/1520-0442(1998)011<1455:cdiami>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001864472
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1175/1520-0442(2002)015<2462:eotsaa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012861913
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1175/1520-0442(2003)16<1378:ttmeaa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010530699
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1175/1520-0450(1973)012<1066:tseota>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022853495
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1175/1520-0477(2001)082<2377:esotfc>2.3.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030538581
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1175/1520-0485(1984)014<0666:atcteo>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041983275
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1175/1520-0493(1984)112<2359:seofss>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013125238
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1175/1520-0493(1997)125<3297:efanat>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028289719
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1175/2008jcli2596.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063454059
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1175/jcli3537.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036151970
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1175/jcli3747.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053653975
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1175/jcli3820.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016648194
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1175/jcli3824.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019857303
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1214/aos/1176347265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017576273
160 rdf:type schema:CreativeWork
161 https://doi.org/10.5194/acp-7-2503-2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040567083
162 rdf:type schema:CreativeWork
163 https://doi.org/10.5194/cp-8-433-2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026188004
164 rdf:type schema:CreativeWork
165 https://www.grid.ac/institutes/grid.61221.36 schema:alternateName Gwangju Institute of Science and Technology
166 schema:name Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
167 rdf:type schema:Organization
168 https://www.grid.ac/institutes/grid.8657.c schema:alternateName Finnish Meteorological Institute
169 schema:name Finnish Meteorological Institute, Helsinki, Finland
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...