Using aquaplanets to understand the robust responses of comprehensive climate models to forcing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-05-04

AUTHORS

Brian Medeiros, Bjorn Stevens, Sandrine Bony

ABSTRACT

Idealized climate change experiments using fixed sea-surface temperature are investigated to determine whether zonally symmetric aquaplanet configurations are useful for understanding climate feedbacks in more realistic configurations. The aquaplanets capture many of the robust responses of the large-scale circulation and hydrologic cycle to both warming the sea-surface temperature and quadrupling atmospheric CO2. The cloud response to both perturbations varies across models in both Earth-like and aquaplanet configurations, and this spread arises primarily from regions of large-scale subsidence. Most models produce a consistent cloud change across the subsidence regimes, and the feedback in trade-wind cumulus regions dominates the tropical response. It is shown that these trade-wind regions have similar cloud feedback in Earth-like and aquaplanet warming experiments. The tropical average cloud feedback of the Earth-like experiment is captured by five of eight aquaplanets, and the three outliers are investigated to understand the discrepancy. In two models, the discrepancy is due to warming induced dissipation of stratocumulus decks in the Earth-like configuration which are not represented in the aquaplanet. One model shows a circulation response in the aquaplanet experiment accompanied by a cloud response that differs from the Earth-like configuration. Quadrupling atmospheric CO2 in aquaplanets produces slightly greater adjusted forcing than in Earth-like configurations, showing that land-surface effects dampen the adjusted forcing. The analysis demonstrates how aquaplanets, as part of a model hierarchy, help elucidate robust aspects of climate change and develop understanding of the processes underlying them. More... »

PAGES

1957-1977

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-014-2138-0

DOI

http://dx.doi.org/10.1007/s00382-014-2138-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009581813


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Center for Atmospheric Research, PO BOX 3000, 80307, Boulder, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.57828.30", 
          "name": [
            "National Center for Atmospheric Research, PO BOX 3000, 80307, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Medeiros", 
        "givenName": "Brian", 
        "id": "sg:person.010020345707.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010020345707.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Meteorology, Bundesstr. 53, 20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max Planck Institute for Meteorology, Bundesstr. 53, 20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stevens", 
        "givenName": "Bjorn", 
        "id": "sg:person.01067536354.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067536354.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique, IPSL, CNRS, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Laboratoire de M\u00e9t\u00e9orologie Dynamique, IPSL, CNRS, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bony", 
        "givenName": "Sandrine", 
        "id": "sg:person.013647160343.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00382-003-0369-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014795140", 
          "https://doi.org/10.1007/s00382-003-0369-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/359373a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044975809", 
          "https://doi.org/10.1038/359373a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-007-6692-1_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038216375", 
          "https://doi.org/10.1007/978-94-007-6692-1_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-011-1259-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038094486", 
          "https://doi.org/10.1007/s00382-011-1259-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo1799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023320468", 
          "https://doi.org/10.1038/ngeo1799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-009-0694-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025917673", 
          "https://doi.org/10.1007/s00382-009-0694-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-011-1279-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031005835", 
          "https://doi.org/10.1007/s00382-011-1279-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00376-012-2042-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024911537", 
          "https://doi.org/10.1007/s00376-012-2042-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1725-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028387493", 
          "https://doi.org/10.1007/s00382-013-1725-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1682-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050919640", 
          "https://doi.org/10.1007/s00382-013-1682-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-05-04", 
    "datePublishedReg": "2014-05-04", 
    "description": "Idealized climate change experiments using fixed sea-surface temperature are investigated to determine whether zonally symmetric aquaplanet configurations are useful for understanding climate feedbacks in more realistic configurations. The aquaplanets capture many of the robust responses of the large-scale circulation and hydrologic cycle to both warming the sea-surface temperature and quadrupling atmospheric CO2. The cloud response to both perturbations varies across models in both Earth-like and aquaplanet configurations, and this spread arises primarily from regions of large-scale subsidence. Most models produce a consistent cloud change across the subsidence regimes, and the feedback in trade-wind cumulus regions dominates the tropical response. It is shown that these trade-wind regions have similar cloud feedback in Earth-like and aquaplanet warming experiments. The tropical average cloud feedback of the Earth-like experiment is captured by five of eight aquaplanets, and the three outliers are investigated to understand the discrepancy. In two models, the discrepancy is due to warming induced dissipation of stratocumulus decks in the Earth-like configuration which are not represented in the aquaplanet. One model shows a circulation response in the aquaplanet experiment accompanied by a cloud response that differs from the Earth-like configuration. Quadrupling atmospheric CO2 in aquaplanets produces slightly greater adjusted forcing than in Earth-like configurations, showing that land-surface effects dampen the adjusted forcing. The analysis demonstrates how aquaplanets, as part of a model hierarchy, help elucidate robust aspects of climate change and develop understanding of the processes underlying them.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-014-2138-0", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4320585", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3788763", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7-8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "keywords": [
      "sea surface temperature", 
      "cloud feedback", 
      "aquaplanet configuration", 
      "cloud response", 
      "atmospheric CO2", 
      "zonally symmetric aquaplanet configuration", 
      "trade wind region", 
      "land surface effects", 
      "comprehensive climate models", 
      "large-scale subsidence", 
      "large-scale circulation", 
      "climate change experiments", 
      "tropical response", 
      "circulation response", 
      "climate feedbacks", 
      "subsidence regimes", 
      "stratocumulus deck", 
      "climate models", 
      "hydrologic cycle", 
      "cloud changes", 
      "aquaplanet experiments", 
      "aquaplanet", 
      "change experiments", 
      "climate change", 
      "warming experiment", 
      "most models", 
      "robust aspects", 
      "model hierarchy", 
      "Earth", 
      "realistic configurations", 
      "robust response", 
      "CO2", 
      "forcing", 
      "subsidence", 
      "region", 
      "circulation", 
      "feedback", 
      "discrepancy", 
      "temperature", 
      "changes", 
      "model", 
      "regime", 
      "cycle", 
      "perturbations", 
      "part", 
      "experiments", 
      "dissipation", 
      "deck", 
      "response", 
      "understanding", 
      "process", 
      "configuration", 
      "outliers", 
      "analysis", 
      "spread", 
      "effect", 
      "aspects", 
      "hierarchy"
    ], 
    "name": "Using aquaplanets to understand the robust responses of comprehensive climate models to forcing", 
    "pagination": "1957-1977", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009581813"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-014-2138-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-014-2138-0", 
      "https://app.dimensions.ai/details/publication/pub.1009581813"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_629.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-014-2138-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2138-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2138-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2138-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2138-0'


 

This table displays all metadata directly associated to this object as RDF triples.

179 TRIPLES      21 PREDICATES      92 URIs      74 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-014-2138-0 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N5b23bd8949d642998902ccab99857c14
4 schema:citation sg:pub.10.1007/978-94-007-6692-1_14
5 sg:pub.10.1007/s00376-012-2042-7
6 sg:pub.10.1007/s00382-003-0369-6
7 sg:pub.10.1007/s00382-009-0694-5
8 sg:pub.10.1007/s00382-011-1259-y
9 sg:pub.10.1007/s00382-011-1279-7
10 sg:pub.10.1007/s00382-013-1682-3
11 sg:pub.10.1007/s00382-013-1725-9
12 sg:pub.10.1038/359373a0
13 sg:pub.10.1038/ngeo1799
14 schema:datePublished 2014-05-04
15 schema:datePublishedReg 2014-05-04
16 schema:description Idealized climate change experiments using fixed sea-surface temperature are investigated to determine whether zonally symmetric aquaplanet configurations are useful for understanding climate feedbacks in more realistic configurations. The aquaplanets capture many of the robust responses of the large-scale circulation and hydrologic cycle to both warming the sea-surface temperature and quadrupling atmospheric CO2. The cloud response to both perturbations varies across models in both Earth-like and aquaplanet configurations, and this spread arises primarily from regions of large-scale subsidence. Most models produce a consistent cloud change across the subsidence regimes, and the feedback in trade-wind cumulus regions dominates the tropical response. It is shown that these trade-wind regions have similar cloud feedback in Earth-like and aquaplanet warming experiments. The tropical average cloud feedback of the Earth-like experiment is captured by five of eight aquaplanets, and the three outliers are investigated to understand the discrepancy. In two models, the discrepancy is due to warming induced dissipation of stratocumulus decks in the Earth-like configuration which are not represented in the aquaplanet. One model shows a circulation response in the aquaplanet experiment accompanied by a cloud response that differs from the Earth-like configuration. Quadrupling atmospheric CO2 in aquaplanets produces slightly greater adjusted forcing than in Earth-like configurations, showing that land-surface effects dampen the adjusted forcing. The analysis demonstrates how aquaplanets, as part of a model hierarchy, help elucidate robust aspects of climate change and develop understanding of the processes underlying them.
17 schema:genre article
18 schema:isAccessibleForFree true
19 schema:isPartOf N0d7fbd2c4c364cdfaab37fc66ff75eb3
20 Nd366587478ba4c21939fe174a4165a9d
21 sg:journal.1049631
22 schema:keywords CO2
23 Earth
24 analysis
25 aquaplanet
26 aquaplanet configuration
27 aquaplanet experiments
28 aspects
29 atmospheric CO2
30 change experiments
31 changes
32 circulation
33 circulation response
34 climate change
35 climate change experiments
36 climate feedbacks
37 climate models
38 cloud changes
39 cloud feedback
40 cloud response
41 comprehensive climate models
42 configuration
43 cycle
44 deck
45 discrepancy
46 dissipation
47 effect
48 experiments
49 feedback
50 forcing
51 hierarchy
52 hydrologic cycle
53 land surface effects
54 large-scale circulation
55 large-scale subsidence
56 model
57 model hierarchy
58 most models
59 outliers
60 part
61 perturbations
62 process
63 realistic configurations
64 regime
65 region
66 response
67 robust aspects
68 robust response
69 sea surface temperature
70 spread
71 stratocumulus deck
72 subsidence
73 subsidence regimes
74 temperature
75 trade wind region
76 tropical response
77 understanding
78 warming experiment
79 zonally symmetric aquaplanet configuration
80 schema:name Using aquaplanets to understand the robust responses of comprehensive climate models to forcing
81 schema:pagination 1957-1977
82 schema:productId N34154d149cb94ef1b34b1e9d2a6ba5c4
83 Ne0a07a64239a47bc96936d469c2f54d6
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009581813
85 https://doi.org/10.1007/s00382-014-2138-0
86 schema:sdDatePublished 2022-11-24T20:59
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher N8b82f620c1314706844913bde1587bdf
89 schema:url https://doi.org/10.1007/s00382-014-2138-0
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N0d7fbd2c4c364cdfaab37fc66ff75eb3 schema:volumeNumber 44
94 rdf:type schema:PublicationVolume
95 N15605df3a4b44e11996753827d13d069 rdf:first sg:person.01067536354.83
96 rdf:rest Ne38fe01501b8419fb5f2f8f9b761beef
97 N34154d149cb94ef1b34b1e9d2a6ba5c4 schema:name doi
98 schema:value 10.1007/s00382-014-2138-0
99 rdf:type schema:PropertyValue
100 N5b23bd8949d642998902ccab99857c14 rdf:first sg:person.010020345707.57
101 rdf:rest N15605df3a4b44e11996753827d13d069
102 N8b82f620c1314706844913bde1587bdf schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 Nd366587478ba4c21939fe174a4165a9d schema:issueNumber 7-8
105 rdf:type schema:PublicationIssue
106 Ne0a07a64239a47bc96936d469c2f54d6 schema:name dimensions_id
107 schema:value pub.1009581813
108 rdf:type schema:PropertyValue
109 Ne38fe01501b8419fb5f2f8f9b761beef rdf:first sg:person.013647160343.22
110 rdf:rest rdf:nil
111 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
112 schema:name Earth Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
115 schema:name Atmospheric Sciences
116 rdf:type schema:DefinedTerm
117 sg:grant.3788763 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-014-2138-0
118 rdf:type schema:MonetaryGrant
119 sg:grant.4320585 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-014-2138-0
120 rdf:type schema:MonetaryGrant
121 sg:journal.1049631 schema:issn 0930-7575
122 1432-0894
123 schema:name Climate Dynamics
124 schema:publisher Springer Nature
125 rdf:type schema:Periodical
126 sg:person.010020345707.57 schema:affiliation grid-institutes:grid.57828.30
127 schema:familyName Medeiros
128 schema:givenName Brian
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010020345707.57
130 rdf:type schema:Person
131 sg:person.01067536354.83 schema:affiliation grid-institutes:grid.450268.d
132 schema:familyName Stevens
133 schema:givenName Bjorn
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067536354.83
135 rdf:type schema:Person
136 sg:person.013647160343.22 schema:affiliation grid-institutes:grid.4444.0
137 schema:familyName Bony
138 schema:givenName Sandrine
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22
140 rdf:type schema:Person
141 sg:pub.10.1007/978-94-007-6692-1_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038216375
142 https://doi.org/10.1007/978-94-007-6692-1_14
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s00376-012-2042-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024911537
145 https://doi.org/10.1007/s00376-012-2042-7
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s00382-003-0369-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014795140
148 https://doi.org/10.1007/s00382-003-0369-6
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s00382-009-0694-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025917673
151 https://doi.org/10.1007/s00382-009-0694-5
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00382-011-1259-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1038094486
154 https://doi.org/10.1007/s00382-011-1259-y
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s00382-011-1279-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031005835
157 https://doi.org/10.1007/s00382-011-1279-7
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s00382-013-1682-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050919640
160 https://doi.org/10.1007/s00382-013-1682-3
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s00382-013-1725-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028387493
163 https://doi.org/10.1007/s00382-013-1725-9
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/359373a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044975809
166 https://doi.org/10.1038/359373a0
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/ngeo1799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023320468
169 https://doi.org/10.1038/ngeo1799
170 rdf:type schema:CreativeWork
171 grid-institutes:grid.4444.0 schema:alternateName Laboratoire de Météorologie Dynamique, IPSL, CNRS, Paris, France
172 schema:name Laboratoire de Météorologie Dynamique, IPSL, CNRS, Paris, France
173 rdf:type schema:Organization
174 grid-institutes:grid.450268.d schema:alternateName Max Planck Institute for Meteorology, Bundesstr. 53, 20146, Hamburg, Germany
175 schema:name Max Planck Institute for Meteorology, Bundesstr. 53, 20146, Hamburg, Germany
176 rdf:type schema:Organization
177 grid-institutes:grid.57828.30 schema:alternateName National Center for Atmospheric Research, PO BOX 3000, 80307, Boulder, CO, USA
178 schema:name National Center for Atmospheric Research, PO BOX 3000, 80307, Boulder, CO, USA
179 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...