Transient climate changes in a perturbed parameter ensemble of emissions-driven earth system model simulations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-03-08

AUTHORS

James M. Murphy, Ben B. B. Booth, Chris A. Boulton, Robin T. Clark, Glen R. Harris, Jason A. Lowe, David M. H. Sexton

ABSTRACT

We describe results from a 57-member ensemble of transient climate change simulations, featuring simultaneous perturbations to 54 parameters in the atmosphere, ocean, sulphur cycle and terrestrial ecosystem components of an earth system model (ESM). These emissions-driven simulations are compared against the CMIP3 multi-model ensemble of physical climate system models, used extensively to inform previous assessments of regional climate change, and also against emissions-driven simulations from ESMs contributed to the CMIP5 archive. Members of our earth system perturbed parameter ensemble (ESPPE) are competitive with CMIP3 and CMIP5 models in their simulations of historical climate. In particular, they perform reasonably well in comparison with HadGEM2-ES, a more sophisticated and expensive earth system model contributed to CMIP5. The ESPPE therefore provides a computationally cost-effective tool to explore interactions between earth system processes. In response to a non-intervention emissions scenario, the ESPPE simulates distributions of future regional temperature change characterised by wide ranges, and warm shifts, compared to those of CMIP3 models. These differences partly reflect the uncertain influence of global carbon cycle feedbacks in the ESPPE. In addition, the regional effects of interactions between different earth system feedbacks, particularly involving physical and ecosystem processes, shift and widen the ESPPE spread in normalised patterns of surface temperature and precipitation change in many regions. Significant differences from CMIP3 also arise from the use of parametric perturbations (rather than a multimodel ensemble) to represent model uncertainties, and this is also the case when ESPPE results are compared against parallel emissions-driven simulations from CMIP5 ESMs. When driven by an aggressive mitigation scenario, the ESPPE and HadGEM2-ES reveal significant but uncertain impacts in limiting temperature increases during the second half of the twenty-first century. Emissions-driven simulations create scope for development of errors in properties that were previously prescribed in coupled ocean–atmosphere models, such as historical CO2 concentrations and vegetation distributions. In this context, historical intra-ensemble variations in the airborne fraction of CO2 emissions, and in summer soil moisture in northern hemisphere continental regions, are shown to be potentially useful constraints, subject to uncertainties in the relevant observations. Our results suggest that future climate-related risks can be assessed more comprehensively by updating projection methodologies to support formal combination of emissions-driven perturbed parameter and multi-model earth system model simulations with suitable observational constraints. This would provide scenarios underpinned by a more complete representation of the chain of uncertainties from anthropogenic emissions to future climate outcomes. More... »

PAGES

2855-2885

References to SciGraph publications

  • 2011-02-11. Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment in CLIMATE DYNAMICS
  • 2010-12-12. Observational evidence for soil-moisture impact on hot extremes in southeastern Europe in NATURE GEOSCIENCE
  • 2013-01-13. A global assessment of the effects of climate policy on the impacts of climate change in NATURE CLIMATE CHANGE
  • 1996. RothC-26.3 - A Model for the turnover of carbon in soil in EVALUATION OF SOIL ORGANIC MATTER MODELS
  • 2011-10-20. Sources of uncertainty in future changes in local precipitation in CLIMATE DYNAMICS
  • 2000-02. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments in CLIMATE DYNAMICS
  • 2013-05-29. Early warning signals of simulated Amazon rainforest dieback in THEORETICAL ECOLOGY
  • 2010-04-06. Impact of soil moisture–atmosphere coupling on European climate extremes and trends in a regional climate model in CLIMATE DYNAMICS
  • 2004-04-27. Amazonian forest dieback under climate-carbon cycle projections for the 21st century in THEORETICAL AND APPLIED CLIMATOLOGY
  • 2004-05-06. The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global climate warming in THEORETICAL AND APPLIED CLIMATOLOGY
  • 2006-10-10. Going to the Extremes in CLIMATIC CHANGE
  • 2000-10. Quantifying the uncertainty in forecasts of anthropogenic climate change in NATURE
  • 2012-01-29. Asymmetries in tropical rainfall and circulation patterns in idealised CO2 removal experiments in CLIMATE DYNAMICS
  • 2012-12-29. Interactions between perturbations to different Earth system components simulated by a fully-coupled climate model in CLIMATE DYNAMICS
  • 2004-08. Quantification of modelling uncertainties in a large ensemble of climate change simulations in NATURE
  • 2010-07-06. Influence of SST biases on future climate change projections in CLIMATE DYNAMICS
  • 2010-02. The next generation of scenarios for climate change research and assessment in NATURE
  • 2013-01-22. On the estimation of systematic error in regression-based predictions of climate sensitivity in CLIMATIC CHANGE
  • 2010-05-07. Climate model errors, feedbacks and forcings: a comparison of perturbed physics and multi-model ensembles in CLIMATE DYNAMICS
  • 2007-09-11. Mechanisms for the land/sea warming contrast exhibited by simulations of climate change in CLIMATE DYNAMICS
  • 2009-11-17. Trends in the sources and sinks of carbon dioxide in NATURE GEOSCIENCE
  • 2006-01-19. Quantifying uncertainty in changes in extreme event frequency in response to doubled CO2 using a large ensemble of GCM simulations in CLIMATE DYNAMICS
  • 2009-06-28. Committed terrestrial ecosystem changes due to climate change in NATURE GEOSCIENCE
  • 2013-01-30. Probabilistic projections of transient climate change in CLIMATE DYNAMICS
  • 2003-03. Simple indices of global climate variability and change: Part I – variability and correlation structure in CLIMATE DYNAMICS
  • 2011-07-12. The sensitivity of the meridional overturning circulation to modelling uncertainty in a perturbed physics ensemble without flux adjustment in CLIMATE DYNAMICS
  • 2012-05-27. Asymmetric European summer heat predictability from wet and dry southern winters and springs in NATURE CLIMATE CHANGE
  • 2000-11. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model in NATURE
  • 2011-11-17. Multivariate probabilistic projections using imperfect climate models part I: outline of methodology in CLIMATE DYNAMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00382-014-2097-5

    DOI

    http://dx.doi.org/10.1007/s00382-014-2097-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006448610


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Murphy", 
            "givenName": "James M.", 
            "id": "sg:person.07573103435.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07573103435.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Booth", 
            "givenName": "Ben B. B.", 
            "id": "sg:person.0704545361.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704545361.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "College of Life and Environmental Sciences, University of Exeter, Prince of Wales Road, EX4 4PS, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.8391.3", 
              "name": [
                "College of Life and Environmental Sciences, University of Exeter, Prince of Wales Road, EX4 4PS, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Boulton", 
            "givenName": "Chris A.", 
            "id": "sg:person.0742310252.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742310252.69"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Clark", 
            "givenName": "Robin T.", 
            "id": "sg:person.010656657017.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010656657017.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Harris", 
            "givenName": "Glen R.", 
            "id": "sg:person.015500574235.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015500574235.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lowe", 
            "givenName": "Jason A.", 
            "id": "sg:person.011066117233.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066117233.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sexton", 
            "givenName": "David M. H.", 
            "id": "sg:person.014153746435.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014153746435.96"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ngeo555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020138573", 
              "https://doi.org/10.1038/ngeo555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo689", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042657111", 
              "https://doi.org/10.1038/ngeo689"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-012-0671-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002827223", 
              "https://doi.org/10.1007/s10584-012-0671-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08823", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006069800", 
              "https://doi.org/10.1038/nature08823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-61094-3_17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008699300", 
              "https://doi.org/10.1007/978-3-642-61094-3_17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0808-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008516124", 
              "https://doi.org/10.1007/s00382-010-0808-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35041539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011328414", 
              "https://doi.org/10.1038/35041539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12080-013-0191-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002422215", 
              "https://doi.org/10.1007/s12080-013-0191-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-011-1210-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015736062", 
              "https://doi.org/10.1007/s00382-011-1210-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-007-0306-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002755636", 
              "https://doi.org/10.1007/s00382-007-0306-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1793", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015666115", 
              "https://doi.org/10.1038/nclimate1793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0875-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007011719", 
              "https://doi.org/10.1007/s00382-010-0875-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-011-1110-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052056865", 
              "https://doi.org/10.1007/s00382-011-1110-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo1032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025101977", 
              "https://doi.org/10.1038/ngeo1032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0780-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051625990", 
              "https://doi.org/10.1007/s00382-010-0780-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-005-0097-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052933292", 
              "https://doi.org/10.1007/s00382-005-0097-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00704-004-0049-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033796123", 
              "https://doi.org/10.1007/s00704-004-0049-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015242699", 
              "https://doi.org/10.1007/s003820050010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-011-1208-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010186182", 
              "https://doi.org/10.1007/s00382-011-1208-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-006-9051-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033458924", 
              "https://doi.org/10.1007/s10584-006-9051-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35036559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016303772", 
              "https://doi.org/10.1038/35036559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-012-1647-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024520622", 
              "https://doi.org/10.1007/s00382-012-1647-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-011-1005-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011698336", 
              "https://doi.org/10.1007/s00382-011-1005-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02771", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036499414", 
              "https://doi.org/10.1038/nature02771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-012-1618-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045101910", 
              "https://doi.org/10.1007/s00382-012-1618-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00704-004-0050-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013717757", 
              "https://doi.org/10.1007/s00704-004-0050-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1536", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005752180", 
              "https://doi.org/10.1038/nclimate1536"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-012-1287-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048486891", 
              "https://doi.org/10.1007/s00382-012-1287-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-002-0286-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086153698", 
              "https://doi.org/10.1007/s00382-002-0286-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-03-08", 
        "datePublishedReg": "2014-03-08", 
        "description": "We describe results from a 57-member ensemble of transient climate change simulations, featuring simultaneous perturbations to 54 parameters in the atmosphere, ocean, sulphur cycle and terrestrial ecosystem components of an earth system model (ESM). These emissions-driven simulations are compared against the CMIP3 multi-model ensemble of physical climate system models, used extensively to inform previous assessments of regional climate change, and also against emissions-driven simulations from ESMs contributed to the CMIP5 archive. Members of our earth system perturbed parameter ensemble (ESPPE) are competitive with CMIP3 and CMIP5 models in their simulations of historical climate. In particular, they perform reasonably well in comparison with HadGEM2-ES, a more sophisticated and expensive earth system model contributed to CMIP5. The ESPPE therefore provides a computationally cost-effective tool to explore interactions between earth system processes. In response to a non-intervention emissions scenario, the ESPPE simulates distributions of future regional temperature change characterised by wide ranges, and warm shifts, compared to those of CMIP3 models. These differences partly reflect the uncertain influence of global carbon cycle feedbacks in the ESPPE. In addition, the regional effects of interactions between different earth system feedbacks, particularly involving physical and ecosystem processes, shift and widen the ESPPE spread in normalised patterns of surface temperature and precipitation change in many regions. Significant differences from CMIP3 also arise from the use of parametric perturbations (rather than a multimodel ensemble) to represent model uncertainties, and this is also the case when ESPPE results are compared against parallel emissions-driven simulations from CMIP5 ESMs. When driven by an aggressive mitigation scenario, the ESPPE and HadGEM2-ES reveal significant but uncertain impacts in limiting temperature increases during the second half of the twenty-first century. Emissions-driven simulations create scope for development of errors in properties that were previously prescribed in coupled ocean\u2013atmosphere models, such as historical CO2 concentrations and vegetation distributions. In this context, historical intra-ensemble variations in the airborne fraction of CO2 emissions, and in summer soil moisture in northern hemisphere continental regions, are shown to be potentially useful constraints, subject to uncertainties in the relevant observations. Our results suggest that future climate-related risks can be assessed more comprehensively by updating projection methodologies to support formal combination of emissions-driven perturbed parameter and multi-model earth system model simulations with suitable observational constraints. This would provide scenarios underpinned by a more complete representation of the chain of uncertainties from anthropogenic emissions to future climate outcomes.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00382-014-2097-5", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7037241", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1049631", 
            "issn": [
              "0930-7575", 
              "1432-0894"
            ], 
            "name": "Climate Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9-10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "43"
          }
        ], 
        "keywords": [
          "Earth System Model", 
          "emission-driven simulations", 
          "Earth system model simulations", 
          "system model simulations", 
          "HadGEM2-ES", 
          "parameter ensemble", 
          "model simulations", 
          "Northern Hemisphere continental regions", 
          "transient climate change simulations", 
          "CMIP3 multi-model ensemble", 
          "CMIP5 Earth System Models", 
          "future climate-related risks", 
          "global carbon cycle feedbacks", 
          "ocean-atmosphere model", 
          "climate change simulations", 
          "Climate System Model", 
          "perturbed parameter ensemble", 
          "Earth system feedbacks", 
          "aggressive mitigation scenario", 
          "regional climate change", 
          "multi-model ensemble", 
          "carbon cycle feedbacks", 
          "Earth system processes", 
          "regional temperature changes", 
          "summer soil moisture", 
          "chain of uncertainties", 
          "system model", 
          "development of errors", 
          "CMIP5 models", 
          "CMIP3 models", 
          "transient climate", 
          "CMIP5 archive", 
          "precipitation changes", 
          "airborne fraction", 
          "cycle feedbacks", 
          "continental regions", 
          "change simulations", 
          "Earth system", 
          "historical climate", 
          "emission scenarios", 
          "anthropogenic emissions", 
          "warm shift", 
          "sulfur cycle", 
          "climate-related risks", 
          "surface temperature", 
          "vegetation distribution", 
          "soil moisture", 
          "climate change", 
          "useful constraints", 
          "terrestrial ecosystem components", 
          "climate outcomes", 
          "CO2 concentration", 
          "mitigation scenarios", 
          "regional effects", 
          "observational constraints", 
          "CMIP3", 
          "temperature changes", 
          "perturbed parameters", 
          "ecosystem processes", 
          "system feedback", 
          "climate", 
          "ecosystem components", 
          "temperature increase", 
          "system processes", 
          "previous assessments", 
          "uncertain impact", 
          "twenty-first century", 
          "model uncertainty", 
          "relevant observations", 
          "ensemble", 
          "formal combination", 
          "uncertainty", 
          "CMIP5", 
          "Ocean", 
          "projection methodology", 
          "CO2 emissions", 
          "second half", 
          "region", 
          "moisture", 
          "atmosphere", 
          "cost-effective tool", 
          "scenarios", 
          "uncertain influence", 
          "complete representation", 
          "archives", 
          "distribution", 
          "changes", 
          "simulations", 
          "perturbations", 
          "emission", 
          "feedback", 
          "constraints", 
          "model", 
          "variation", 
          "simultaneous perturbation", 
          "century", 
          "cycle", 
          "wide range", 
          "process", 
          "temperature", 
          "patterns", 
          "concentration", 
          "impact", 
          "shift", 
          "fraction", 
          "results", 
          "parameters", 
          "range", 
          "influence", 
          "error", 
          "comparison", 
          "components", 
          "half", 
          "differences", 
          "assessment", 
          "increase", 
          "interaction", 
          "spread", 
          "combination", 
          "system", 
          "representation", 
          "response", 
          "methodology", 
          "tool", 
          "development", 
          "addition", 
          "members", 
          "properties", 
          "context", 
          "effect", 
          "use", 
          "cases", 
          "significant differences", 
          "chain", 
          "scope", 
          "risk", 
          "parametric perturbations", 
          "observations", 
          "outcomes"
        ], 
        "name": "Transient climate changes in a perturbed parameter ensemble of emissions-driven earth system model simulations", 
        "pagination": "2855-2885", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006448610"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00382-014-2097-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00382-014-2097-5", 
          "https://app.dimensions.ai/details/publication/pub.1006448610"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_641.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00382-014-2097-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2097-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2097-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2097-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-014-2097-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    363 TRIPLES      21 PREDICATES      193 URIs      155 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00382-014-2097-5 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 anzsrc-for:0406
    4 schema:author Nb837bd6e3bcb438b811be34e4822aa99
    5 schema:citation sg:pub.10.1007/978-3-642-61094-3_17
    6 sg:pub.10.1007/s00382-002-0286-0
    7 sg:pub.10.1007/s00382-005-0097-1
    8 sg:pub.10.1007/s00382-007-0306-1
    9 sg:pub.10.1007/s00382-010-0780-8
    10 sg:pub.10.1007/s00382-010-0808-0
    11 sg:pub.10.1007/s00382-010-0875-2
    12 sg:pub.10.1007/s00382-011-1005-5
    13 sg:pub.10.1007/s00382-011-1110-5
    14 sg:pub.10.1007/s00382-011-1208-9
    15 sg:pub.10.1007/s00382-011-1210-2
    16 sg:pub.10.1007/s00382-012-1287-2
    17 sg:pub.10.1007/s00382-012-1618-3
    18 sg:pub.10.1007/s00382-012-1647-y
    19 sg:pub.10.1007/s003820050010
    20 sg:pub.10.1007/s00704-004-0049-4
    21 sg:pub.10.1007/s00704-004-0050-y
    22 sg:pub.10.1007/s10584-006-9051-4
    23 sg:pub.10.1007/s10584-012-0671-6
    24 sg:pub.10.1007/s12080-013-0191-7
    25 sg:pub.10.1038/35036559
    26 sg:pub.10.1038/35041539
    27 sg:pub.10.1038/nature02771
    28 sg:pub.10.1038/nature08823
    29 sg:pub.10.1038/nclimate1536
    30 sg:pub.10.1038/nclimate1793
    31 sg:pub.10.1038/ngeo1032
    32 sg:pub.10.1038/ngeo555
    33 sg:pub.10.1038/ngeo689
    34 schema:datePublished 2014-03-08
    35 schema:datePublishedReg 2014-03-08
    36 schema:description We describe results from a 57-member ensemble of transient climate change simulations, featuring simultaneous perturbations to 54 parameters in the atmosphere, ocean, sulphur cycle and terrestrial ecosystem components of an earth system model (ESM). These emissions-driven simulations are compared against the CMIP3 multi-model ensemble of physical climate system models, used extensively to inform previous assessments of regional climate change, and also against emissions-driven simulations from ESMs contributed to the CMIP5 archive. Members of our earth system perturbed parameter ensemble (ESPPE) are competitive with CMIP3 and CMIP5 models in their simulations of historical climate. In particular, they perform reasonably well in comparison with HadGEM2-ES, a more sophisticated and expensive earth system model contributed to CMIP5. The ESPPE therefore provides a computationally cost-effective tool to explore interactions between earth system processes. In response to a non-intervention emissions scenario, the ESPPE simulates distributions of future regional temperature change characterised by wide ranges, and warm shifts, compared to those of CMIP3 models. These differences partly reflect the uncertain influence of global carbon cycle feedbacks in the ESPPE. In addition, the regional effects of interactions between different earth system feedbacks, particularly involving physical and ecosystem processes, shift and widen the ESPPE spread in normalised patterns of surface temperature and precipitation change in many regions. Significant differences from CMIP3 also arise from the use of parametric perturbations (rather than a multimodel ensemble) to represent model uncertainties, and this is also the case when ESPPE results are compared against parallel emissions-driven simulations from CMIP5 ESMs. When driven by an aggressive mitigation scenario, the ESPPE and HadGEM2-ES reveal significant but uncertain impacts in limiting temperature increases during the second half of the twenty-first century. Emissions-driven simulations create scope for development of errors in properties that were previously prescribed in coupled ocean–atmosphere models, such as historical CO2 concentrations and vegetation distributions. In this context, historical intra-ensemble variations in the airborne fraction of CO2 emissions, and in summer soil moisture in northern hemisphere continental regions, are shown to be potentially useful constraints, subject to uncertainties in the relevant observations. Our results suggest that future climate-related risks can be assessed more comprehensively by updating projection methodologies to support formal combination of emissions-driven perturbed parameter and multi-model earth system model simulations with suitable observational constraints. This would provide scenarios underpinned by a more complete representation of the chain of uncertainties from anthropogenic emissions to future climate outcomes.
    37 schema:genre article
    38 schema:isAccessibleForFree false
    39 schema:isPartOf N4333c0369f0e46008b34ab5846229d26
    40 N66edc7819b614704b9e86b7a37aa53c2
    41 sg:journal.1049631
    42 schema:keywords CMIP3
    43 CMIP3 models
    44 CMIP3 multi-model ensemble
    45 CMIP5
    46 CMIP5 Earth System Models
    47 CMIP5 archive
    48 CMIP5 models
    49 CO2 concentration
    50 CO2 emissions
    51 Climate System Model
    52 Earth System Model
    53 Earth system
    54 Earth system feedbacks
    55 Earth system model simulations
    56 Earth system processes
    57 HadGEM2-ES
    58 Northern Hemisphere continental regions
    59 Ocean
    60 addition
    61 aggressive mitigation scenario
    62 airborne fraction
    63 anthropogenic emissions
    64 archives
    65 assessment
    66 atmosphere
    67 carbon cycle feedbacks
    68 cases
    69 century
    70 chain
    71 chain of uncertainties
    72 change simulations
    73 changes
    74 climate
    75 climate change
    76 climate change simulations
    77 climate outcomes
    78 climate-related risks
    79 combination
    80 comparison
    81 complete representation
    82 components
    83 concentration
    84 constraints
    85 context
    86 continental regions
    87 cost-effective tool
    88 cycle
    89 cycle feedbacks
    90 development
    91 development of errors
    92 differences
    93 distribution
    94 ecosystem components
    95 ecosystem processes
    96 effect
    97 emission
    98 emission scenarios
    99 emission-driven simulations
    100 ensemble
    101 error
    102 feedback
    103 formal combination
    104 fraction
    105 future climate-related risks
    106 global carbon cycle feedbacks
    107 half
    108 historical climate
    109 impact
    110 increase
    111 influence
    112 interaction
    113 members
    114 methodology
    115 mitigation scenarios
    116 model
    117 model simulations
    118 model uncertainty
    119 moisture
    120 multi-model ensemble
    121 observational constraints
    122 observations
    123 ocean-atmosphere model
    124 outcomes
    125 parameter ensemble
    126 parameters
    127 parametric perturbations
    128 patterns
    129 perturbations
    130 perturbed parameter ensemble
    131 perturbed parameters
    132 precipitation changes
    133 previous assessments
    134 process
    135 projection methodology
    136 properties
    137 range
    138 region
    139 regional climate change
    140 regional effects
    141 regional temperature changes
    142 relevant observations
    143 representation
    144 response
    145 results
    146 risk
    147 scenarios
    148 scope
    149 second half
    150 shift
    151 significant differences
    152 simulations
    153 simultaneous perturbation
    154 soil moisture
    155 spread
    156 sulfur cycle
    157 summer soil moisture
    158 surface temperature
    159 system
    160 system feedback
    161 system model
    162 system model simulations
    163 system processes
    164 temperature
    165 temperature changes
    166 temperature increase
    167 terrestrial ecosystem components
    168 tool
    169 transient climate
    170 transient climate change simulations
    171 twenty-first century
    172 uncertain impact
    173 uncertain influence
    174 uncertainty
    175 use
    176 useful constraints
    177 variation
    178 vegetation distribution
    179 warm shift
    180 wide range
    181 schema:name Transient climate changes in a perturbed parameter ensemble of emissions-driven earth system model simulations
    182 schema:pagination 2855-2885
    183 schema:productId N07384664fdab4984a223995ce3994402
    184 N8247f0c7a1d94d429a6137c0cb1951e1
    185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006448610
    186 https://doi.org/10.1007/s00382-014-2097-5
    187 schema:sdDatePublished 2022-10-01T06:40
    188 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    189 schema:sdPublisher Nefda03775aa6488586d011e59a4f0979
    190 schema:url https://doi.org/10.1007/s00382-014-2097-5
    191 sgo:license sg:explorer/license/
    192 sgo:sdDataset articles
    193 rdf:type schema:ScholarlyArticle
    194 N07384664fdab4984a223995ce3994402 schema:name doi
    195 schema:value 10.1007/s00382-014-2097-5
    196 rdf:type schema:PropertyValue
    197 N12021ef9c8714bf997b530c4c43dc660 rdf:first sg:person.015500574235.51
    198 rdf:rest Ncd65836f2f0e4de992082520e22a96a2
    199 N4333c0369f0e46008b34ab5846229d26 schema:issueNumber 9-10
    200 rdf:type schema:PublicationIssue
    201 N66edc7819b614704b9e86b7a37aa53c2 schema:volumeNumber 43
    202 rdf:type schema:PublicationVolume
    203 N6c3a3fd8cf9b4299ab92d37dae6decaf rdf:first sg:person.014153746435.96
    204 rdf:rest rdf:nil
    205 N8247f0c7a1d94d429a6137c0cb1951e1 schema:name dimensions_id
    206 schema:value pub.1006448610
    207 rdf:type schema:PropertyValue
    208 Nb837bd6e3bcb438b811be34e4822aa99 rdf:first sg:person.07573103435.16
    209 rdf:rest Nd47853e20788421ebfb12d5428135be7
    210 Nc145f4b2a9fb43edab2974f5d576f166 rdf:first sg:person.010656657017.99
    211 rdf:rest N12021ef9c8714bf997b530c4c43dc660
    212 Ncd65836f2f0e4de992082520e22a96a2 rdf:first sg:person.011066117233.90
    213 rdf:rest N6c3a3fd8cf9b4299ab92d37dae6decaf
    214 Nd47853e20788421ebfb12d5428135be7 rdf:first sg:person.0704545361.18
    215 rdf:rest Nff673f30f40649a08b4aa1a6de6cc4f7
    216 Nefda03775aa6488586d011e59a4f0979 schema:name Springer Nature - SN SciGraph project
    217 rdf:type schema:Organization
    218 Nff673f30f40649a08b4aa1a6de6cc4f7 rdf:first sg:person.0742310252.69
    219 rdf:rest Nc145f4b2a9fb43edab2974f5d576f166
    220 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    221 schema:name Earth Sciences
    222 rdf:type schema:DefinedTerm
    223 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    224 schema:name Atmospheric Sciences
    225 rdf:type schema:DefinedTerm
    226 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    227 schema:name Physical Geography and Environmental Geoscience
    228 rdf:type schema:DefinedTerm
    229 sg:grant.7037241 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-014-2097-5
    230 rdf:type schema:MonetaryGrant
    231 sg:journal.1049631 schema:issn 0930-7575
    232 1432-0894
    233 schema:name Climate Dynamics
    234 schema:publisher Springer Nature
    235 rdf:type schema:Periodical
    236 sg:person.010656657017.99 schema:affiliation grid-institutes:grid.17100.37
    237 schema:familyName Clark
    238 schema:givenName Robin T.
    239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010656657017.99
    240 rdf:type schema:Person
    241 sg:person.011066117233.90 schema:affiliation grid-institutes:grid.17100.37
    242 schema:familyName Lowe
    243 schema:givenName Jason A.
    244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066117233.90
    245 rdf:type schema:Person
    246 sg:person.014153746435.96 schema:affiliation grid-institutes:grid.17100.37
    247 schema:familyName Sexton
    248 schema:givenName David M. H.
    249 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014153746435.96
    250 rdf:type schema:Person
    251 sg:person.015500574235.51 schema:affiliation grid-institutes:grid.17100.37
    252 schema:familyName Harris
    253 schema:givenName Glen R.
    254 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015500574235.51
    255 rdf:type schema:Person
    256 sg:person.0704545361.18 schema:affiliation grid-institutes:grid.17100.37
    257 schema:familyName Booth
    258 schema:givenName Ben B. B.
    259 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704545361.18
    260 rdf:type schema:Person
    261 sg:person.0742310252.69 schema:affiliation grid-institutes:grid.8391.3
    262 schema:familyName Boulton
    263 schema:givenName Chris A.
    264 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742310252.69
    265 rdf:type schema:Person
    266 sg:person.07573103435.16 schema:affiliation grid-institutes:grid.17100.37
    267 schema:familyName Murphy
    268 schema:givenName James M.
    269 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07573103435.16
    270 rdf:type schema:Person
    271 sg:pub.10.1007/978-3-642-61094-3_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008699300
    272 https://doi.org/10.1007/978-3-642-61094-3_17
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1007/s00382-002-0286-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086153698
    275 https://doi.org/10.1007/s00382-002-0286-0
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1007/s00382-005-0097-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052933292
    278 https://doi.org/10.1007/s00382-005-0097-1
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1007/s00382-007-0306-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002755636
    281 https://doi.org/10.1007/s00382-007-0306-1
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1007/s00382-010-0780-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051625990
    284 https://doi.org/10.1007/s00382-010-0780-8
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1007/s00382-010-0808-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008516124
    287 https://doi.org/10.1007/s00382-010-0808-0
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1007/s00382-010-0875-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007011719
    290 https://doi.org/10.1007/s00382-010-0875-2
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1007/s00382-011-1005-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011698336
    293 https://doi.org/10.1007/s00382-011-1005-5
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1007/s00382-011-1110-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052056865
    296 https://doi.org/10.1007/s00382-011-1110-5
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1007/s00382-011-1208-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010186182
    299 https://doi.org/10.1007/s00382-011-1208-9
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1007/s00382-011-1210-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015736062
    302 https://doi.org/10.1007/s00382-011-1210-2
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1007/s00382-012-1287-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048486891
    305 https://doi.org/10.1007/s00382-012-1287-2
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1007/s00382-012-1618-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045101910
    308 https://doi.org/10.1007/s00382-012-1618-3
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1007/s00382-012-1647-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1024520622
    311 https://doi.org/10.1007/s00382-012-1647-y
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1007/s003820050010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015242699
    314 https://doi.org/10.1007/s003820050010
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1007/s00704-004-0049-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033796123
    317 https://doi.org/10.1007/s00704-004-0049-4
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1007/s00704-004-0050-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1013717757
    320 https://doi.org/10.1007/s00704-004-0050-y
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1007/s10584-006-9051-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033458924
    323 https://doi.org/10.1007/s10584-006-9051-4
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1007/s10584-012-0671-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002827223
    326 https://doi.org/10.1007/s10584-012-0671-6
    327 rdf:type schema:CreativeWork
    328 sg:pub.10.1007/s12080-013-0191-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002422215
    329 https://doi.org/10.1007/s12080-013-0191-7
    330 rdf:type schema:CreativeWork
    331 sg:pub.10.1038/35036559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016303772
    332 https://doi.org/10.1038/35036559
    333 rdf:type schema:CreativeWork
    334 sg:pub.10.1038/35041539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011328414
    335 https://doi.org/10.1038/35041539
    336 rdf:type schema:CreativeWork
    337 sg:pub.10.1038/nature02771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036499414
    338 https://doi.org/10.1038/nature02771
    339 rdf:type schema:CreativeWork
    340 sg:pub.10.1038/nature08823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006069800
    341 https://doi.org/10.1038/nature08823
    342 rdf:type schema:CreativeWork
    343 sg:pub.10.1038/nclimate1536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005752180
    344 https://doi.org/10.1038/nclimate1536
    345 rdf:type schema:CreativeWork
    346 sg:pub.10.1038/nclimate1793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015666115
    347 https://doi.org/10.1038/nclimate1793
    348 rdf:type schema:CreativeWork
    349 sg:pub.10.1038/ngeo1032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025101977
    350 https://doi.org/10.1038/ngeo1032
    351 rdf:type schema:CreativeWork
    352 sg:pub.10.1038/ngeo555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020138573
    353 https://doi.org/10.1038/ngeo555
    354 rdf:type schema:CreativeWork
    355 sg:pub.10.1038/ngeo689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042657111
    356 https://doi.org/10.1038/ngeo689
    357 rdf:type schema:CreativeWork
    358 grid-institutes:grid.17100.37 schema:alternateName Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK
    359 schema:name Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK
    360 rdf:type schema:Organization
    361 grid-institutes:grid.8391.3 schema:alternateName College of Life and Environmental Sciences, University of Exeter, Prince of Wales Road, EX4 4PS, Exeter, UK
    362 schema:name College of Life and Environmental Sciences, University of Exeter, Prince of Wales Road, EX4 4PS, Exeter, UK
    363 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...