Climate feedback efficiency and synergy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-05-29

AUTHORS

Thorsten Mauritsen, Rune G. Graversen, Daniel Klocke, Peter L. Langen, Bjorn Stevens, Lorenzo Tomassini

ABSTRACT

Earth’s climate sensitivity to radiative forcing induced by a doubling of the atmospheric CO2 is determined by feedback mechanisms, including changes in atmospheric water vapor, clouds and surface albedo, that act to either amplify or dampen the response. The climate system is frequently interpreted in terms of a simple energy balance model, in which it is assumed that individual feedback mechanisms are additive and act independently. Here we test these assumptions by systematically controlling, or locking, the radiative feedbacks in a state-of-the-art climate model. The method is shown to yield a near-perfect decomposition of change into partial temperature contributions pertaining to forcing and each of the feedbacks. In the studied model water vapor feedback stands for about half the temperature change, CO2-forcing about one third, while cloud and surface albedo feedback contributions are relatively small. We find a close correspondence between forcing, feedback and partial surface temperature response for the water vapor and surface albedo feedbacks, while the cloud feedback is inefficient in inducing surface temperature change. Analysis suggests that cloud-induced warming in the upper tropical troposphere, consistent with rising convective cloud anvils in a warming climate enhances the negative lapse-rate feedback, thereby offsetting some of the warming that would otherwise be attributable to this positive cloud feedback. By subsequently combining feedback mechanisms we find a positive synergy acting between the water vapor feedback and the cloud feedback; that is, the combined cloud and water vapor feedback is greater than the sum of its parts. Negative synergies surround the surface albedo feedback, as associated cloud and water vapor changes dampen the anticipated climate change induced by retreating snow and ice. Our results highlight the importance of treating the coupling between clouds, water vapor and temperature in a deepening troposphere. More... »

PAGES

2539-2554

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-013-1808-7

DOI

http://dx.doi.org/10.1007/s00382-013-1808-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029296476


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Meteorology, Bundesstrasse 53, 20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max Planck Institute for Meteorology, Bundesstrasse 53, 20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mauritsen", 
        "givenName": "Thorsten", 
        "id": "sg:person.013637426464.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013637426464.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Meteorology, Stockholm University, Stockholm, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.10548.38", 
          "name": [
            "Department of Meteorology, Stockholm University, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Graversen", 
        "givenName": "Rune G.", 
        "id": "sg:person.014672001640.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014672001640.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium Range Weather Forecasts, Reading, UK", 
          "id": "http://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "European Centre for Medium Range Weather Forecasts, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klocke", 
        "givenName": "Daniel", 
        "id": "sg:person.012543174541.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012543174541.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Danish Meteorological Institute (DMI), Copenhagen, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.14170.33", 
          "name": [
            "Danish Meteorological Institute (DMI), Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Langen", 
        "givenName": "Peter L.", 
        "id": "sg:person.015640007073.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015640007073.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Danish Meteorological Institute (DMI), Copenhagen, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.14170.33", 
          "name": [
            "Danish Meteorological Institute (DMI), Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stevens", 
        "givenName": "Bjorn", 
        "id": "sg:person.01067536354.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067536354.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Danish Meteorological Institute (DMI), Copenhagen, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.14170.33", 
          "name": [
            "Danish Meteorological Institute (DMI), Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tomassini", 
        "givenName": "Lorenzo", 
        "id": "sg:person.014204250741.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014204250741.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00382-009-0535-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041108293", 
          "https://doi.org/10.1007/s00382-009-0535-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-008-0425-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037125193", 
          "https://doi.org/10.1007/s00382-008-0425-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1336-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030808219", 
          "https://doi.org/10.1007/s00382-012-1336-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-003-0310-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084987147", 
          "https://doi.org/10.1007/s00382-003-0310-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029118492", 
          "https://doi.org/10.1038/nature09051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1725-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028387493", 
          "https://doi.org/10.1007/s00382-013-1725-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1294-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049427394", 
          "https://doi.org/10.1007/s00382-012-1294-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1757-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024487846", 
          "https://doi.org/10.1007/s00382-013-1757-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-011-1067-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037933588", 
          "https://doi.org/10.1007/s00382-011-1067-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-05-29", 
    "datePublishedReg": "2013-05-29", 
    "description": "Earth\u2019s climate sensitivity to radiative forcing induced by a doubling of the atmospheric CO2 is determined by feedback mechanisms, including changes in atmospheric water vapor, clouds and surface albedo, that act to either amplify or dampen the response. The climate system is frequently interpreted in terms of a simple energy balance model, in which it is assumed that individual feedback mechanisms are additive and act independently. Here we test these assumptions by systematically controlling, or locking, the radiative feedbacks in a state-of-the-art climate model. The method is shown to yield a near-perfect decomposition of change into partial temperature contributions pertaining to forcing and each of the feedbacks. In the studied model water vapor feedback stands for about half the temperature change, CO2-forcing about one third, while cloud and surface albedo feedback contributions are relatively small. We find a close correspondence between forcing, feedback and partial surface temperature response for the water vapor and surface albedo feedbacks, while the cloud feedback is inefficient in inducing surface temperature change. Analysis suggests that cloud-induced warming in the upper tropical troposphere, consistent with rising convective cloud anvils in a warming climate enhances the negative lapse-rate feedback, thereby offsetting some of the warming that would otherwise be attributable to this positive cloud feedback. By subsequently combining feedback mechanisms we find a positive synergy acting between the water vapor feedback and the cloud feedback; that is, the combined cloud and water vapor feedback is greater than the sum of its parts. Negative synergies surround the surface albedo feedback, as associated cloud and water vapor changes dampen the anticipated climate change induced by retreating snow and ice. Our results highlight the importance of treating the coupling between clouds, water vapor and temperature in a deepening troposphere.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-013-1808-7", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9-10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "keywords": [
      "water vapor feedback", 
      "surface albedo feedback", 
      "cloud feedback", 
      "albedo feedback", 
      "water vapor", 
      "climate sensitivity", 
      "negative lapse rate feedback", 
      "simple energy balance model", 
      "Earth's climate sensitivity", 
      "art climate models", 
      "positive cloud feedback", 
      "lapse rate feedback", 
      "water vapor changes", 
      "upper tropical troposphere", 
      "atmospheric water vapor", 
      "surface temperature response", 
      "surface temperature changes", 
      "individual feedback mechanisms", 
      "energy balance model", 
      "temperature changes", 
      "feedback mechanism", 
      "cloud anvil", 
      "climate models", 
      "climate system", 
      "tropical troposphere", 
      "vapor changes", 
      "surface albedo", 
      "warming climate", 
      "atmospheric CO2", 
      "radiative feedback", 
      "associated cloud", 
      "balance model", 
      "climate change", 
      "feedback contribution", 
      "temperature response", 
      "warming", 
      "cloud", 
      "close correspondence", 
      "temperature contribution", 
      "vapor", 
      "CO2", 
      "troposphere", 
      "albedo", 
      "ice", 
      "snow", 
      "climate", 
      "deepening", 
      "anvil", 
      "changes", 
      "feedback", 
      "contribution", 
      "perfect decomposition", 
      "feedback efficiency", 
      "doubling", 
      "model", 
      "part", 
      "temperature", 
      "correspondence", 
      "importance", 
      "response", 
      "mechanism", 
      "assumption", 
      "coupling", 
      "analysis", 
      "results", 
      "system", 
      "third", 
      "decomposition", 
      "sensitivity", 
      "synergy", 
      "terms", 
      "sum", 
      "state", 
      "method", 
      "acting", 
      "negative synergy", 
      "efficiency"
    ], 
    "name": "Climate feedback efficiency and synergy", 
    "pagination": "2539-2554", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029296476"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-013-1808-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-013-1808-7", 
      "https://app.dimensions.ai/details/publication/pub.1029296476"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_596.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-013-1808-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-013-1808-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-013-1808-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-013-1808-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-013-1808-7'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      110 URIs      93 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-013-1808-7 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author Nf254f544924a41d38a90f07fe36d8d9f
4 schema:citation sg:pub.10.1007/s00382-003-0310-z
5 sg:pub.10.1007/s00382-008-0425-3
6 sg:pub.10.1007/s00382-009-0535-6
7 sg:pub.10.1007/s00382-011-1067-4
8 sg:pub.10.1007/s00382-012-1294-3
9 sg:pub.10.1007/s00382-012-1336-x
10 sg:pub.10.1007/s00382-013-1725-9
11 sg:pub.10.1007/s00382-013-1757-1
12 sg:pub.10.1038/nature09051
13 schema:datePublished 2013-05-29
14 schema:datePublishedReg 2013-05-29
15 schema:description Earth’s climate sensitivity to radiative forcing induced by a doubling of the atmospheric CO2 is determined by feedback mechanisms, including changes in atmospheric water vapor, clouds and surface albedo, that act to either amplify or dampen the response. The climate system is frequently interpreted in terms of a simple energy balance model, in which it is assumed that individual feedback mechanisms are additive and act independently. Here we test these assumptions by systematically controlling, or locking, the radiative feedbacks in a state-of-the-art climate model. The method is shown to yield a near-perfect decomposition of change into partial temperature contributions pertaining to forcing and each of the feedbacks. In the studied model water vapor feedback stands for about half the temperature change, CO2-forcing about one third, while cloud and surface albedo feedback contributions are relatively small. We find a close correspondence between forcing, feedback and partial surface temperature response for the water vapor and surface albedo feedbacks, while the cloud feedback is inefficient in inducing surface temperature change. Analysis suggests that cloud-induced warming in the upper tropical troposphere, consistent with rising convective cloud anvils in a warming climate enhances the negative lapse-rate feedback, thereby offsetting some of the warming that would otherwise be attributable to this positive cloud feedback. By subsequently combining feedback mechanisms we find a positive synergy acting between the water vapor feedback and the cloud feedback; that is, the combined cloud and water vapor feedback is greater than the sum of its parts. Negative synergies surround the surface albedo feedback, as associated cloud and water vapor changes dampen the anticipated climate change induced by retreating snow and ice. Our results highlight the importance of treating the coupling between clouds, water vapor and temperature in a deepening troposphere.
16 schema:genre article
17 schema:isAccessibleForFree true
18 schema:isPartOf N9df398e7761a421283ae029c8d897eae
19 Nf572934a43e84dd9a07cccdd49638d4b
20 sg:journal.1049631
21 schema:keywords CO2
22 Earth's climate sensitivity
23 acting
24 albedo
25 albedo feedback
26 analysis
27 anvil
28 art climate models
29 associated cloud
30 assumption
31 atmospheric CO2
32 atmospheric water vapor
33 balance model
34 changes
35 climate
36 climate change
37 climate models
38 climate sensitivity
39 climate system
40 close correspondence
41 cloud
42 cloud anvil
43 cloud feedback
44 contribution
45 correspondence
46 coupling
47 decomposition
48 deepening
49 doubling
50 efficiency
51 energy balance model
52 feedback
53 feedback contribution
54 feedback efficiency
55 feedback mechanism
56 ice
57 importance
58 individual feedback mechanisms
59 lapse rate feedback
60 mechanism
61 method
62 model
63 negative lapse rate feedback
64 negative synergy
65 part
66 perfect decomposition
67 positive cloud feedback
68 radiative feedback
69 response
70 results
71 sensitivity
72 simple energy balance model
73 snow
74 state
75 sum
76 surface albedo
77 surface albedo feedback
78 surface temperature changes
79 surface temperature response
80 synergy
81 system
82 temperature
83 temperature changes
84 temperature contribution
85 temperature response
86 terms
87 third
88 tropical troposphere
89 troposphere
90 upper tropical troposphere
91 vapor
92 vapor changes
93 warming
94 warming climate
95 water vapor
96 water vapor changes
97 water vapor feedback
98 schema:name Climate feedback efficiency and synergy
99 schema:pagination 2539-2554
100 schema:productId N1275a17ae54e4c8bbd6078c8d351a2e4
101 N87ee9390e587476f821d11436052fe30
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029296476
103 https://doi.org/10.1007/s00382-013-1808-7
104 schema:sdDatePublished 2022-10-01T06:38
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher N537da6c3f66545bc84e6f3a399141850
107 schema:url https://doi.org/10.1007/s00382-013-1808-7
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N1275a17ae54e4c8bbd6078c8d351a2e4 schema:name doi
112 schema:value 10.1007/s00382-013-1808-7
113 rdf:type schema:PropertyValue
114 N25865eff13e74b7e9ce01034c21c1a01 rdf:first sg:person.01067536354.83
115 rdf:rest Nad4707822407489aa694339c0a3dfbbe
116 N537da6c3f66545bc84e6f3a399141850 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 N73388228ef894c94adfc6865103b73a7 rdf:first sg:person.015640007073.07
119 rdf:rest N25865eff13e74b7e9ce01034c21c1a01
120 N87ee9390e587476f821d11436052fe30 schema:name dimensions_id
121 schema:value pub.1029296476
122 rdf:type schema:PropertyValue
123 N9df398e7761a421283ae029c8d897eae schema:issueNumber 9-10
124 rdf:type schema:PublicationIssue
125 Na4a33b27bc214df6b9b480b468281722 rdf:first sg:person.012543174541.86
126 rdf:rest N73388228ef894c94adfc6865103b73a7
127 Nad4707822407489aa694339c0a3dfbbe rdf:first sg:person.014204250741.12
128 rdf:rest rdf:nil
129 Nb54a12c813ff434cb21db3c9a5d644bf rdf:first sg:person.014672001640.02
130 rdf:rest Na4a33b27bc214df6b9b480b468281722
131 Nf254f544924a41d38a90f07fe36d8d9f rdf:first sg:person.013637426464.22
132 rdf:rest Nb54a12c813ff434cb21db3c9a5d644bf
133 Nf572934a43e84dd9a07cccdd49638d4b schema:volumeNumber 41
134 rdf:type schema:PublicationVolume
135 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
136 schema:name Earth Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
139 schema:name Atmospheric Sciences
140 rdf:type schema:DefinedTerm
141 sg:journal.1049631 schema:issn 0930-7575
142 1432-0894
143 schema:name Climate Dynamics
144 schema:publisher Springer Nature
145 rdf:type schema:Periodical
146 sg:person.01067536354.83 schema:affiliation grid-institutes:grid.14170.33
147 schema:familyName Stevens
148 schema:givenName Bjorn
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067536354.83
150 rdf:type schema:Person
151 sg:person.012543174541.86 schema:affiliation grid-institutes:grid.42781.38
152 schema:familyName Klocke
153 schema:givenName Daniel
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012543174541.86
155 rdf:type schema:Person
156 sg:person.013637426464.22 schema:affiliation grid-institutes:grid.450268.d
157 schema:familyName Mauritsen
158 schema:givenName Thorsten
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013637426464.22
160 rdf:type schema:Person
161 sg:person.014204250741.12 schema:affiliation grid-institutes:grid.14170.33
162 schema:familyName Tomassini
163 schema:givenName Lorenzo
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014204250741.12
165 rdf:type schema:Person
166 sg:person.014672001640.02 schema:affiliation grid-institutes:grid.10548.38
167 schema:familyName Graversen
168 schema:givenName Rune G.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014672001640.02
170 rdf:type schema:Person
171 sg:person.015640007073.07 schema:affiliation grid-institutes:grid.14170.33
172 schema:familyName Langen
173 schema:givenName Peter L.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015640007073.07
175 rdf:type schema:Person
176 sg:pub.10.1007/s00382-003-0310-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1084987147
177 https://doi.org/10.1007/s00382-003-0310-z
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s00382-008-0425-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037125193
180 https://doi.org/10.1007/s00382-008-0425-3
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/s00382-009-0535-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041108293
183 https://doi.org/10.1007/s00382-009-0535-6
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s00382-011-1067-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037933588
186 https://doi.org/10.1007/s00382-011-1067-4
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/s00382-012-1294-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049427394
189 https://doi.org/10.1007/s00382-012-1294-3
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/s00382-012-1336-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030808219
192 https://doi.org/10.1007/s00382-012-1336-x
193 rdf:type schema:CreativeWork
194 sg:pub.10.1007/s00382-013-1725-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028387493
195 https://doi.org/10.1007/s00382-013-1725-9
196 rdf:type schema:CreativeWork
197 sg:pub.10.1007/s00382-013-1757-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024487846
198 https://doi.org/10.1007/s00382-013-1757-1
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/nature09051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029118492
201 https://doi.org/10.1038/nature09051
202 rdf:type schema:CreativeWork
203 grid-institutes:grid.10548.38 schema:alternateName Department of Meteorology, Stockholm University, Stockholm, Sweden
204 schema:name Department of Meteorology, Stockholm University, Stockholm, Sweden
205 rdf:type schema:Organization
206 grid-institutes:grid.14170.33 schema:alternateName Danish Meteorological Institute (DMI), Copenhagen, Denmark
207 schema:name Danish Meteorological Institute (DMI), Copenhagen, Denmark
208 rdf:type schema:Organization
209 grid-institutes:grid.42781.38 schema:alternateName European Centre for Medium Range Weather Forecasts, Reading, UK
210 schema:name European Centre for Medium Range Weather Forecasts, Reading, UK
211 rdf:type schema:Organization
212 grid-institutes:grid.450268.d schema:alternateName Max Planck Institute for Meteorology, Bundesstrasse 53, 20146, Hamburg, Germany
213 schema:name Max Planck Institute for Meteorology, Bundesstrasse 53, 20146, Hamburg, Germany
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...