Climate feedback efficiency and synergy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-05-29

AUTHORS

Thorsten Mauritsen, Rune G. Graversen, Daniel Klocke, Peter L. Langen, Bjorn Stevens, Lorenzo Tomassini

ABSTRACT

Earth’s climate sensitivity to radiative forcing induced by a doubling of the atmospheric CO2 is determined by feedback mechanisms, including changes in atmospheric water vapor, clouds and surface albedo, that act to either amplify or dampen the response. The climate system is frequently interpreted in terms of a simple energy balance model, in which it is assumed that individual feedback mechanisms are additive and act independently. Here we test these assumptions by systematically controlling, or locking, the radiative feedbacks in a state-of-the-art climate model. The method is shown to yield a near-perfect decomposition of change into partial temperature contributions pertaining to forcing and each of the feedbacks. In the studied model water vapor feedback stands for about half the temperature change, CO2-forcing about one third, while cloud and surface albedo feedback contributions are relatively small. We find a close correspondence between forcing, feedback and partial surface temperature response for the water vapor and surface albedo feedbacks, while the cloud feedback is inefficient in inducing surface temperature change. Analysis suggests that cloud-induced warming in the upper tropical troposphere, consistent with rising convective cloud anvils in a warming climate enhances the negative lapse-rate feedback, thereby offsetting some of the warming that would otherwise be attributable to this positive cloud feedback. By subsequently combining feedback mechanisms we find a positive synergy acting between the water vapor feedback and the cloud feedback; that is, the combined cloud and water vapor feedback is greater than the sum of its parts. Negative synergies surround the surface albedo feedback, as associated cloud and water vapor changes dampen the anticipated climate change induced by retreating snow and ice. Our results highlight the importance of treating the coupling between clouds, water vapor and temperature in a deepening troposphere. More... »

PAGES

2539-2554

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-013-1808-7

DOI

http://dx.doi.org/10.1007/s00382-013-1808-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029296476


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Meteorology, Bundesstrasse 53, 20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max Planck Institute for Meteorology, Bundesstrasse 53, 20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mauritsen", 
        "givenName": "Thorsten", 
        "id": "sg:person.013637426464.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013637426464.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Meteorology, Stockholm University, Stockholm, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.10548.38", 
          "name": [
            "Department of Meteorology, Stockholm University, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Graversen", 
        "givenName": "Rune G.", 
        "id": "sg:person.014672001640.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014672001640.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium Range Weather Forecasts, Reading, UK", 
          "id": "http://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "European Centre for Medium Range Weather Forecasts, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klocke", 
        "givenName": "Daniel", 
        "id": "sg:person.012543174541.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012543174541.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Danish Meteorological Institute (DMI), Copenhagen, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.14170.33", 
          "name": [
            "Danish Meteorological Institute (DMI), Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Langen", 
        "givenName": "Peter L.", 
        "id": "sg:person.015640007073.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015640007073.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Danish Meteorological Institute (DMI), Copenhagen, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.14170.33", 
          "name": [
            "Danish Meteorological Institute (DMI), Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stevens", 
        "givenName": "Bjorn", 
        "id": "sg:person.01067536354.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067536354.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Danish Meteorological Institute (DMI), Copenhagen, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.14170.33", 
          "name": [
            "Danish Meteorological Institute (DMI), Copenhagen, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tomassini", 
        "givenName": "Lorenzo", 
        "id": "sg:person.014204250741.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014204250741.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00382-009-0535-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041108293", 
          "https://doi.org/10.1007/s00382-009-0535-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-008-0425-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037125193", 
          "https://doi.org/10.1007/s00382-008-0425-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1336-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030808219", 
          "https://doi.org/10.1007/s00382-012-1336-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-003-0310-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084987147", 
          "https://doi.org/10.1007/s00382-003-0310-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029118492", 
          "https://doi.org/10.1038/nature09051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1725-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028387493", 
          "https://doi.org/10.1007/s00382-013-1725-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1294-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049427394", 
          "https://doi.org/10.1007/s00382-012-1294-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-013-1757-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024487846", 
          "https://doi.org/10.1007/s00382-013-1757-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-011-1067-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037933588", 
          "https://doi.org/10.1007/s00382-011-1067-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-05-29", 
    "datePublishedReg": "2013-05-29", 
    "description": "Earth\u2019s climate sensitivity to radiative forcing induced by a doubling of the atmospheric CO2 is determined by feedback mechanisms, including changes in atmospheric water vapor, clouds and surface albedo, that act to either amplify or dampen the response. The climate system is frequently interpreted in terms of a simple energy balance model, in which it is assumed that individual feedback mechanisms are additive and act independently. Here we test these assumptions by systematically controlling, or locking, the radiative feedbacks in a state-of-the-art climate model. The method is shown to yield a near-perfect decomposition of change into partial temperature contributions pertaining to forcing and each of the feedbacks. In the studied model water vapor feedback stands for about half the temperature change, CO2-forcing about one third, while cloud and surface albedo feedback contributions are relatively small. We find a close correspondence between forcing, feedback and partial surface temperature response for the water vapor and surface albedo feedbacks, while the cloud feedback is inefficient in inducing surface temperature change. Analysis suggests that cloud-induced warming in the upper tropical troposphere, consistent with rising convective cloud anvils in a warming climate enhances the negative lapse-rate feedback, thereby offsetting some of the warming that would otherwise be attributable to this positive cloud feedback. By subsequently combining feedback mechanisms we find a positive synergy acting between the water vapor feedback and the cloud feedback; that is, the combined cloud and water vapor feedback is greater than the sum of its parts. Negative synergies surround the surface albedo feedback, as associated cloud and water vapor changes dampen the anticipated climate change induced by retreating snow and ice. Our results highlight the importance of treating the coupling between clouds, water vapor and temperature in a deepening troposphere.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-013-1808-7", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9-10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "keywords": [
      "water vapor feedback", 
      "surface albedo feedback", 
      "cloud feedback", 
      "albedo feedback", 
      "water vapor", 
      "climate sensitivity", 
      "negative lapse rate feedback", 
      "simple energy balance model", 
      "Earth's climate sensitivity", 
      "art climate models", 
      "positive cloud feedback", 
      "lapse rate feedback", 
      "water vapor changes", 
      "upper tropical troposphere", 
      "atmospheric water vapor", 
      "surface temperature response", 
      "surface temperature changes", 
      "individual feedback mechanisms", 
      "energy balance model", 
      "temperature changes", 
      "feedback mechanism", 
      "cloud anvil", 
      "climate models", 
      "climate system", 
      "tropical troposphere", 
      "vapor changes", 
      "surface albedo", 
      "warming climate", 
      "atmospheric CO2", 
      "radiative feedback", 
      "associated cloud", 
      "balance model", 
      "climate change", 
      "feedback contribution", 
      "temperature response", 
      "warming", 
      "cloud", 
      "close correspondence", 
      "temperature contribution", 
      "vapor", 
      "CO2", 
      "troposphere", 
      "albedo", 
      "ice", 
      "snow", 
      "climate", 
      "deepening", 
      "anvil", 
      "changes", 
      "feedback", 
      "contribution", 
      "perfect decomposition", 
      "feedback efficiency", 
      "doubling", 
      "model", 
      "part", 
      "temperature", 
      "correspondence", 
      "importance", 
      "response", 
      "mechanism", 
      "assumption", 
      "coupling", 
      "analysis", 
      "results", 
      "system", 
      "third", 
      "decomposition", 
      "sensitivity", 
      "synergy", 
      "terms", 
      "sum", 
      "state", 
      "method", 
      "acting", 
      "negative synergy", 
      "efficiency"
    ], 
    "name": "Climate feedback efficiency and synergy", 
    "pagination": "2539-2554", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029296476"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-013-1808-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-013-1808-7", 
      "https://app.dimensions.ai/details/publication/pub.1029296476"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_596.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-013-1808-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-013-1808-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-013-1808-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-013-1808-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-013-1808-7'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      110 URIs      93 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-013-1808-7 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N0cd62fe4028740388d23597f04a664a7
4 schema:citation sg:pub.10.1007/s00382-003-0310-z
5 sg:pub.10.1007/s00382-008-0425-3
6 sg:pub.10.1007/s00382-009-0535-6
7 sg:pub.10.1007/s00382-011-1067-4
8 sg:pub.10.1007/s00382-012-1294-3
9 sg:pub.10.1007/s00382-012-1336-x
10 sg:pub.10.1007/s00382-013-1725-9
11 sg:pub.10.1007/s00382-013-1757-1
12 sg:pub.10.1038/nature09051
13 schema:datePublished 2013-05-29
14 schema:datePublishedReg 2013-05-29
15 schema:description Earth’s climate sensitivity to radiative forcing induced by a doubling of the atmospheric CO2 is determined by feedback mechanisms, including changes in atmospheric water vapor, clouds and surface albedo, that act to either amplify or dampen the response. The climate system is frequently interpreted in terms of a simple energy balance model, in which it is assumed that individual feedback mechanisms are additive and act independently. Here we test these assumptions by systematically controlling, or locking, the radiative feedbacks in a state-of-the-art climate model. The method is shown to yield a near-perfect decomposition of change into partial temperature contributions pertaining to forcing and each of the feedbacks. In the studied model water vapor feedback stands for about half the temperature change, CO2-forcing about one third, while cloud and surface albedo feedback contributions are relatively small. We find a close correspondence between forcing, feedback and partial surface temperature response for the water vapor and surface albedo feedbacks, while the cloud feedback is inefficient in inducing surface temperature change. Analysis suggests that cloud-induced warming in the upper tropical troposphere, consistent with rising convective cloud anvils in a warming climate enhances the negative lapse-rate feedback, thereby offsetting some of the warming that would otherwise be attributable to this positive cloud feedback. By subsequently combining feedback mechanisms we find a positive synergy acting between the water vapor feedback and the cloud feedback; that is, the combined cloud and water vapor feedback is greater than the sum of its parts. Negative synergies surround the surface albedo feedback, as associated cloud and water vapor changes dampen the anticipated climate change induced by retreating snow and ice. Our results highlight the importance of treating the coupling between clouds, water vapor and temperature in a deepening troposphere.
16 schema:genre article
17 schema:isAccessibleForFree true
18 schema:isPartOf N073eb51d4ae44ccf9c9991831568a824
19 N649320e5a3fa4a4a8aeceae8cbd2c3df
20 sg:journal.1049631
21 schema:keywords CO2
22 Earth's climate sensitivity
23 acting
24 albedo
25 albedo feedback
26 analysis
27 anvil
28 art climate models
29 associated cloud
30 assumption
31 atmospheric CO2
32 atmospheric water vapor
33 balance model
34 changes
35 climate
36 climate change
37 climate models
38 climate sensitivity
39 climate system
40 close correspondence
41 cloud
42 cloud anvil
43 cloud feedback
44 contribution
45 correspondence
46 coupling
47 decomposition
48 deepening
49 doubling
50 efficiency
51 energy balance model
52 feedback
53 feedback contribution
54 feedback efficiency
55 feedback mechanism
56 ice
57 importance
58 individual feedback mechanisms
59 lapse rate feedback
60 mechanism
61 method
62 model
63 negative lapse rate feedback
64 negative synergy
65 part
66 perfect decomposition
67 positive cloud feedback
68 radiative feedback
69 response
70 results
71 sensitivity
72 simple energy balance model
73 snow
74 state
75 sum
76 surface albedo
77 surface albedo feedback
78 surface temperature changes
79 surface temperature response
80 synergy
81 system
82 temperature
83 temperature changes
84 temperature contribution
85 temperature response
86 terms
87 third
88 tropical troposphere
89 troposphere
90 upper tropical troposphere
91 vapor
92 vapor changes
93 warming
94 warming climate
95 water vapor
96 water vapor changes
97 water vapor feedback
98 schema:name Climate feedback efficiency and synergy
99 schema:pagination 2539-2554
100 schema:productId N75e14e7012a84692b90fa13f5321d5b4
101 Nb2610e9e9e0548f797cb1c89fcea78e2
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029296476
103 https://doi.org/10.1007/s00382-013-1808-7
104 schema:sdDatePublished 2022-10-01T06:38
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher N5ecf79ca4ce048a488f21fa922a41944
107 schema:url https://doi.org/10.1007/s00382-013-1808-7
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N073eb51d4ae44ccf9c9991831568a824 schema:issueNumber 9-10
112 rdf:type schema:PublicationIssue
113 N0c96e7acc5d74912ab263ded830b737c rdf:first sg:person.015640007073.07
114 rdf:rest Nd476e85726b140579d75fce8873288e7
115 N0cd62fe4028740388d23597f04a664a7 rdf:first sg:person.013637426464.22
116 rdf:rest N7c104556eeb84c72b2c4fc4cef547d90
117 N5ecf79ca4ce048a488f21fa922a41944 schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 N649320e5a3fa4a4a8aeceae8cbd2c3df schema:volumeNumber 41
120 rdf:type schema:PublicationVolume
121 N75e14e7012a84692b90fa13f5321d5b4 schema:name doi
122 schema:value 10.1007/s00382-013-1808-7
123 rdf:type schema:PropertyValue
124 N7c104556eeb84c72b2c4fc4cef547d90 rdf:first sg:person.014672001640.02
125 rdf:rest Nf4f53b802f644a788163ba75ac9d582e
126 Na37d8d63f4b643f184213f013c4d1b24 rdf:first sg:person.014204250741.12
127 rdf:rest rdf:nil
128 Nb2610e9e9e0548f797cb1c89fcea78e2 schema:name dimensions_id
129 schema:value pub.1029296476
130 rdf:type schema:PropertyValue
131 Nd476e85726b140579d75fce8873288e7 rdf:first sg:person.01067536354.83
132 rdf:rest Na37d8d63f4b643f184213f013c4d1b24
133 Nf4f53b802f644a788163ba75ac9d582e rdf:first sg:person.012543174541.86
134 rdf:rest N0c96e7acc5d74912ab263ded830b737c
135 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
136 schema:name Earth Sciences
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
139 schema:name Atmospheric Sciences
140 rdf:type schema:DefinedTerm
141 sg:journal.1049631 schema:issn 0930-7575
142 1432-0894
143 schema:name Climate Dynamics
144 schema:publisher Springer Nature
145 rdf:type schema:Periodical
146 sg:person.01067536354.83 schema:affiliation grid-institutes:grid.14170.33
147 schema:familyName Stevens
148 schema:givenName Bjorn
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067536354.83
150 rdf:type schema:Person
151 sg:person.012543174541.86 schema:affiliation grid-institutes:grid.42781.38
152 schema:familyName Klocke
153 schema:givenName Daniel
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012543174541.86
155 rdf:type schema:Person
156 sg:person.013637426464.22 schema:affiliation grid-institutes:grid.450268.d
157 schema:familyName Mauritsen
158 schema:givenName Thorsten
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013637426464.22
160 rdf:type schema:Person
161 sg:person.014204250741.12 schema:affiliation grid-institutes:grid.14170.33
162 schema:familyName Tomassini
163 schema:givenName Lorenzo
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014204250741.12
165 rdf:type schema:Person
166 sg:person.014672001640.02 schema:affiliation grid-institutes:grid.10548.38
167 schema:familyName Graversen
168 schema:givenName Rune G.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014672001640.02
170 rdf:type schema:Person
171 sg:person.015640007073.07 schema:affiliation grid-institutes:grid.14170.33
172 schema:familyName Langen
173 schema:givenName Peter L.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015640007073.07
175 rdf:type schema:Person
176 sg:pub.10.1007/s00382-003-0310-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1084987147
177 https://doi.org/10.1007/s00382-003-0310-z
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s00382-008-0425-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037125193
180 https://doi.org/10.1007/s00382-008-0425-3
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/s00382-009-0535-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041108293
183 https://doi.org/10.1007/s00382-009-0535-6
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s00382-011-1067-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037933588
186 https://doi.org/10.1007/s00382-011-1067-4
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/s00382-012-1294-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049427394
189 https://doi.org/10.1007/s00382-012-1294-3
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/s00382-012-1336-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030808219
192 https://doi.org/10.1007/s00382-012-1336-x
193 rdf:type schema:CreativeWork
194 sg:pub.10.1007/s00382-013-1725-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028387493
195 https://doi.org/10.1007/s00382-013-1725-9
196 rdf:type schema:CreativeWork
197 sg:pub.10.1007/s00382-013-1757-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024487846
198 https://doi.org/10.1007/s00382-013-1757-1
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/nature09051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029118492
201 https://doi.org/10.1038/nature09051
202 rdf:type schema:CreativeWork
203 grid-institutes:grid.10548.38 schema:alternateName Department of Meteorology, Stockholm University, Stockholm, Sweden
204 schema:name Department of Meteorology, Stockholm University, Stockholm, Sweden
205 rdf:type schema:Organization
206 grid-institutes:grid.14170.33 schema:alternateName Danish Meteorological Institute (DMI), Copenhagen, Denmark
207 schema:name Danish Meteorological Institute (DMI), Copenhagen, Denmark
208 rdf:type schema:Organization
209 grid-institutes:grid.42781.38 schema:alternateName European Centre for Medium Range Weather Forecasts, Reading, UK
210 schema:name European Centre for Medium Range Weather Forecasts, Reading, UK
211 rdf:type schema:Organization
212 grid-institutes:grid.450268.d schema:alternateName Max Planck Institute for Meteorology, Bundesstrasse 53, 20146, Hamburg, Germany
213 schema:name Max Planck Institute for Meteorology, Bundesstrasse 53, 20146, Hamburg, Germany
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...