Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-04-16

AUTHORS

S. R. M. Ligtenberg, W. J. van de Berg, M. R. van den Broeke, J. G. L. Rae, E. van Meijgaard

ABSTRACT

A regional atmospheric climate model with multi-layer snow module (RACMO2) is forced at the lateral boundaries by global climate model (GCM) data to assess the future climate and surface mass balance (SMB) of the Antarctic ice sheet (AIS). Two different GCMs (ECHAM5 until 2100 and HadCM3 until 2200) and two different emission scenarios (A1B and E1) are used as forcing to capture a realistic range in future climate states. Simulated ice sheet averaged 2 m air temperature (T2m) increases (1.8–3.0 K in 2100 and 2.4–5.3 K in 2200), simultaneously and with the same magnitude as GCM simulated T2m. The SMB and its components increase in magnitude, as they are directly influenced by the temperature increase. Changes in atmospheric circulation around Antarctica play a minor role in future SMB changes. During the next two centuries, the projected increase in liquid water flux from rainfall and snowmelt, together 60–200 Gt year−1, will mostly refreeze in the snow pack, so runoff remains small (10–40 Gt year−1). Sublimation increases by 25–50 %, but remains an order of magnitude smaller than snowfall. The increase in snowfall mainly determines future changes in SMB on the AIS: 6–16 % in 2100 and 8–25 % in 2200. Without any ice dynamical response, this would result in an eustatic sea level drop of 20–43 mm in 2100 and 73–163 mm in 2200, compared to the twentieth century. Averaged over the AIS, a strong relation between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Updelta$$\end{document}SMB and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Updelta\hbox{T}_{2{\rm m}}$$\end{document} of 98 ± 5 Gt w.e. year−1 K−1 is found. More... »

PAGES

867-884

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-013-1749-1

DOI

http://dx.doi.org/10.1007/s00382-013-1749-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035506673


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IMAU, Universiteit Utrecht, Utrecht, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "IMAU, Universiteit Utrecht, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ligtenberg", 
        "givenName": "S. R. M.", 
        "id": "sg:person.016636205104.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016636205104.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IMAU, Universiteit Utrecht, Utrecht, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "IMAU, Universiteit Utrecht, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van de Berg", 
        "givenName": "W. J.", 
        "id": "sg:person.011651720537.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011651720537.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IMAU, Universiteit Utrecht, Utrecht, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "IMAU, Universiteit Utrecht, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van den Broeke", 
        "givenName": "M. R.", 
        "id": "sg:person.0643310440.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643310440.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office, Hadley Centre, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office, Hadley Centre, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rae", 
        "givenName": "J. G. L.", 
        "id": "sg:person.011000052137.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011000052137.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "KNMI, De Bilt, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "KNMI, De Bilt, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Meijgaard", 
        "givenName": "E.", 
        "id": "sg:person.016410121107.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016410121107.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature10968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025304515", 
          "https://doi.org/10.1038/nature10968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10712-011-9137-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052947531", 
          "https://doi.org/10.1007/s10712-011-9137-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-006-0177-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034780144", 
          "https://doi.org/10.1007/s00382-006-0177-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022260418", 
          "https://doi.org/10.1038/nature08471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate1590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014747511", 
          "https://doi.org/10.1038/nclimate1590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032490092", 
          "https://doi.org/10.1038/nature11064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-007-0357-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008604761", 
          "https://doi.org/10.1007/s00382-007-0357-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031279988", 
          "https://doi.org/10.1038/ngeo102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-010-0779-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043638372", 
          "https://doi.org/10.1007/s00382-010-0779-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-011-1005-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011698336", 
          "https://doi.org/10.1007/s00382-011-1005-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015242699", 
          "https://doi.org/10.1007/s003820050010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10712-011-9120-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025387140", 
          "https://doi.org/10.1007/s10712-011-9120-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-04-16", 
    "datePublishedReg": "2013-04-16", 
    "description": "A regional atmospheric climate model with multi-layer snow module (RACMO2) is forced at the lateral boundaries by global climate model (GCM) data to assess the future climate and surface mass balance (SMB) of the Antarctic ice sheet (AIS). Two different GCMs (ECHAM5 until 2100 and HadCM3 until 2200) and two different emission scenarios (A1B and E1) are used as forcing to capture a realistic range in future climate states. Simulated ice sheet averaged 2\u00a0m air temperature (T2m) increases (1.8\u20133.0 K in 2100 and 2.4\u20135.3 K in 2200), simultaneously and with the same magnitude as GCM simulated T2m. The SMB and its components increase in magnitude, as they are directly influenced by the temperature increase. Changes in atmospheric circulation around Antarctica play a minor role in future SMB changes. During the next two centuries, the projected increase in liquid water flux from rainfall and snowmelt, together 60\u2013200 Gt year\u22121, will mostly refreeze in the snow pack, so runoff remains small (10\u201340 Gt year\u22121). Sublimation increases by 25\u201350\u00a0%, but remains an order of magnitude smaller than snowfall. The increase in snowfall mainly determines future changes in SMB on the AIS: 6\u201316\u00a0% in 2100 and 8\u201325\u00a0% in 2200. Without any ice dynamical response, this would result in an eustatic sea level drop of 20\u201343\u00a0mm in 2100 and 73\u2013163\u00a0mm in 2200, compared to the twentieth century. Averaged over the AIS, a strong relation between \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Updelta$$\\end{document}SMB and \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\Updelta\\hbox{T}_{2{\\rm m}}$$\\end{document} of 98\u00a0\u00b1\u00a05 Gt w.e. year\u22121 K\u22121 is found.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-013-1749-1", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3780514", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "keywords": [
      "Antarctic Ice Sheet", 
      "surface mass balance", 
      "regional atmospheric climate model", 
      "atmospheric climate model", 
      "ice sheet", 
      "climate models", 
      "mass balance", 
      "eustatic sea-level drop", 
      "future surface mass balance", 
      "global climate model data", 
      "simulated ice sheets", 
      "future climate states", 
      "sea-level drop", 
      "sea-level changes", 
      "climate model data", 
      "different emission scenarios", 
      "liquid water flux", 
      "SMB changes", 
      "climate state", 
      "atmospheric circulation", 
      "different GCMs", 
      "snow module", 
      "future climate", 
      "emission scenarios", 
      "level drop", 
      "snow pack", 
      "future changes", 
      "level changes", 
      "sublimation increases", 
      "lateral boundaries", 
      "air temperature", 
      "model data", 
      "water flux", 
      "GCM", 
      "dynamical response", 
      "temperature increase", 
      "realistic range", 
      "orders of magnitude", 
      "same magnitude", 
      "sheets", 
      "minor role", 
      "magnitude", 
      "snowmelt", 
      "runoff", 
      "Antarctica", 
      "snowfall", 
      "rainfall", 
      "climate", 
      "circulation", 
      "strong relation", 
      "flux", 
      "century", 
      "changes", 
      "balance", 
      "twentieth century", 
      "boundaries", 
      "model", 
      "increase", 
      "scenarios", 
      "temperature", 
      "data", 
      "pack", 
      "drop", 
      "range", 
      "influence", 
      "gt", 
      "components", 
      "order", 
      "relation", 
      "response", 
      "state", 
      "role", 
      "module", 
      "T2"
    ], 
    "name": "Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model", 
    "pagination": "867-884", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035506673"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-013-1749-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-013-1749-1", 
      "https://app.dimensions.ai/details/publication/pub.1035506673"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_612.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-013-1749-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-013-1749-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-013-1749-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-013-1749-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-013-1749-1'


 

This table displays all metadata directly associated to this object as RDF triples.

219 TRIPLES      21 PREDICATES      111 URIs      90 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-013-1749-1 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0406
4 schema:author Nb09dafaabc6049bd9946290607a1e36c
5 schema:citation sg:pub.10.1007/s00382-006-0177-x
6 sg:pub.10.1007/s00382-007-0357-3
7 sg:pub.10.1007/s00382-010-0779-1
8 sg:pub.10.1007/s00382-011-1005-5
9 sg:pub.10.1007/s003820050010
10 sg:pub.10.1007/s10712-011-9120-8
11 sg:pub.10.1007/s10712-011-9137-z
12 sg:pub.10.1038/nature08471
13 sg:pub.10.1038/nature10968
14 sg:pub.10.1038/nature11064
15 sg:pub.10.1038/nclimate1590
16 sg:pub.10.1038/ngeo102
17 schema:datePublished 2013-04-16
18 schema:datePublishedReg 2013-04-16
19 schema:description A regional atmospheric climate model with multi-layer snow module (RACMO2) is forced at the lateral boundaries by global climate model (GCM) data to assess the future climate and surface mass balance (SMB) of the Antarctic ice sheet (AIS). Two different GCMs (ECHAM5 until 2100 and HadCM3 until 2200) and two different emission scenarios (A1B and E1) are used as forcing to capture a realistic range in future climate states. Simulated ice sheet averaged 2 m air temperature (T2m) increases (1.8–3.0 K in 2100 and 2.4–5.3 K in 2200), simultaneously and with the same magnitude as GCM simulated T2m. The SMB and its components increase in magnitude, as they are directly influenced by the temperature increase. Changes in atmospheric circulation around Antarctica play a minor role in future SMB changes. During the next two centuries, the projected increase in liquid water flux from rainfall and snowmelt, together 60–200 Gt year−1, will mostly refreeze in the snow pack, so runoff remains small (10–40 Gt year−1). Sublimation increases by 25–50 %, but remains an order of magnitude smaller than snowfall. The increase in snowfall mainly determines future changes in SMB on the AIS: 6–16 % in 2100 and 8–25 % in 2200. Without any ice dynamical response, this would result in an eustatic sea level drop of 20–43 mm in 2100 and 73–163 mm in 2200, compared to the twentieth century. Averaged over the AIS, a strong relation between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Updelta$$\end{document}SMB and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Updelta\hbox{T}_{2{\rm m}}$$\end{document} of 98 ± 5 Gt w.e. year−1 K−1 is found.
20 schema:genre article
21 schema:isAccessibleForFree false
22 schema:isPartOf N021312ded76c4f89a25d0684ec6c1c9a
23 Ncd38afab7ef14474bbdc80139ae85a66
24 sg:journal.1049631
25 schema:keywords Antarctic Ice Sheet
26 Antarctica
27 GCM
28 SMB changes
29 T2
30 air temperature
31 atmospheric circulation
32 atmospheric climate model
33 balance
34 boundaries
35 century
36 changes
37 circulation
38 climate
39 climate model data
40 climate models
41 climate state
42 components
43 data
44 different GCMs
45 different emission scenarios
46 drop
47 dynamical response
48 emission scenarios
49 eustatic sea-level drop
50 flux
51 future changes
52 future climate
53 future climate states
54 future surface mass balance
55 global climate model data
56 gt
57 ice sheet
58 increase
59 influence
60 lateral boundaries
61 level changes
62 level drop
63 liquid water flux
64 magnitude
65 mass balance
66 minor role
67 model
68 model data
69 module
70 order
71 orders of magnitude
72 pack
73 rainfall
74 range
75 realistic range
76 regional atmospheric climate model
77 relation
78 response
79 role
80 runoff
81 same magnitude
82 scenarios
83 sea-level changes
84 sea-level drop
85 sheets
86 simulated ice sheets
87 snow module
88 snow pack
89 snowfall
90 snowmelt
91 state
92 strong relation
93 sublimation increases
94 surface mass balance
95 temperature
96 temperature increase
97 twentieth century
98 water flux
99 schema:name Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model
100 schema:pagination 867-884
101 schema:productId N38e6498b435749ed9bd0ad41f938fa2e
102 N43ea5a2ae1aa4e5596f7c8db2d9d82f2
103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035506673
104 https://doi.org/10.1007/s00382-013-1749-1
105 schema:sdDatePublished 2022-09-02T15:56
106 schema:sdLicense https://scigraph.springernature.com/explorer/license/
107 schema:sdPublisher N4e3f2e6e2b1f401d955f739a8fe9b357
108 schema:url https://doi.org/10.1007/s00382-013-1749-1
109 sgo:license sg:explorer/license/
110 sgo:sdDataset articles
111 rdf:type schema:ScholarlyArticle
112 N021312ded76c4f89a25d0684ec6c1c9a schema:volumeNumber 41
113 rdf:type schema:PublicationVolume
114 N1a480ed6caa64423a0db60a4e9cd1b7f rdf:first sg:person.016410121107.52
115 rdf:rest rdf:nil
116 N2fe34ff57f874109bc981bf0100493f8 rdf:first sg:person.011000052137.03
117 rdf:rest N1a480ed6caa64423a0db60a4e9cd1b7f
118 N38e6498b435749ed9bd0ad41f938fa2e schema:name doi
119 schema:value 10.1007/s00382-013-1749-1
120 rdf:type schema:PropertyValue
121 N43ea5a2ae1aa4e5596f7c8db2d9d82f2 schema:name dimensions_id
122 schema:value pub.1035506673
123 rdf:type schema:PropertyValue
124 N4e3f2e6e2b1f401d955f739a8fe9b357 schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 Nb09dafaabc6049bd9946290607a1e36c rdf:first sg:person.016636205104.01
127 rdf:rest Nf9abc21c20c14da684340839423124cb
128 Nbb6801070afe498fa310c5a03998b427 rdf:first sg:person.0643310440.25
129 rdf:rest N2fe34ff57f874109bc981bf0100493f8
130 Ncd38afab7ef14474bbdc80139ae85a66 schema:issueNumber 3-4
131 rdf:type schema:PublicationIssue
132 Nf9abc21c20c14da684340839423124cb rdf:first sg:person.011651720537.70
133 rdf:rest Nbb6801070afe498fa310c5a03998b427
134 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
135 schema:name Earth Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
138 schema:name Atmospheric Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
141 schema:name Physical Geography and Environmental Geoscience
142 rdf:type schema:DefinedTerm
143 sg:grant.3780514 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-013-1749-1
144 rdf:type schema:MonetaryGrant
145 sg:journal.1049631 schema:issn 0930-7575
146 1432-0894
147 schema:name Climate Dynamics
148 schema:publisher Springer Nature
149 rdf:type schema:Periodical
150 sg:person.011000052137.03 schema:affiliation grid-institutes:grid.17100.37
151 schema:familyName Rae
152 schema:givenName J. G. L.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011000052137.03
154 rdf:type schema:Person
155 sg:person.011651720537.70 schema:affiliation grid-institutes:grid.5477.1
156 schema:familyName van de Berg
157 schema:givenName W. J.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011651720537.70
159 rdf:type schema:Person
160 sg:person.016410121107.52 schema:affiliation grid-institutes:grid.8653.8
161 schema:familyName van Meijgaard
162 schema:givenName E.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016410121107.52
164 rdf:type schema:Person
165 sg:person.016636205104.01 schema:affiliation grid-institutes:grid.5477.1
166 schema:familyName Ligtenberg
167 schema:givenName S. R. M.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016636205104.01
169 rdf:type schema:Person
170 sg:person.0643310440.25 schema:affiliation grid-institutes:grid.5477.1
171 schema:familyName van den Broeke
172 schema:givenName M. R.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0643310440.25
174 rdf:type schema:Person
175 sg:pub.10.1007/s00382-006-0177-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034780144
176 https://doi.org/10.1007/s00382-006-0177-x
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s00382-007-0357-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008604761
179 https://doi.org/10.1007/s00382-007-0357-3
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s00382-010-0779-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043638372
182 https://doi.org/10.1007/s00382-010-0779-1
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s00382-011-1005-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011698336
185 https://doi.org/10.1007/s00382-011-1005-5
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s003820050010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015242699
188 https://doi.org/10.1007/s003820050010
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/s10712-011-9120-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025387140
191 https://doi.org/10.1007/s10712-011-9120-8
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s10712-011-9137-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1052947531
194 https://doi.org/10.1007/s10712-011-9137-z
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nature08471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022260418
197 https://doi.org/10.1038/nature08471
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nature10968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025304515
200 https://doi.org/10.1038/nature10968
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nature11064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032490092
203 https://doi.org/10.1038/nature11064
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nclimate1590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014747511
206 https://doi.org/10.1038/nclimate1590
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/ngeo102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031279988
209 https://doi.org/10.1038/ngeo102
210 rdf:type schema:CreativeWork
211 grid-institutes:grid.17100.37 schema:alternateName Met Office, Hadley Centre, Exeter, UK
212 schema:name Met Office, Hadley Centre, Exeter, UK
213 rdf:type schema:Organization
214 grid-institutes:grid.5477.1 schema:alternateName IMAU, Universiteit Utrecht, Utrecht, The Netherlands
215 schema:name IMAU, Universiteit Utrecht, Utrecht, The Netherlands
216 rdf:type schema:Organization
217 grid-institutes:grid.8653.8 schema:alternateName KNMI, De Bilt, The Netherlands
218 schema:name KNMI, De Bilt, The Netherlands
219 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...