Drivers of mean climate change around the Netherlands derived from CMIP5 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-03-05

AUTHORS

Bart van den Hurk, Geert Jan van Oldenborgh, Geert Lenderink, Wilco Hazeleger, Rein Haarsma, Hylke de Vries

ABSTRACT

For the construction of regional climate change scenarios spanning a relevant fraction of the spread in climate model projections, an inventory of major drivers of regional climate change is needed. For the Netherlands, a previous set of regional climate change scenarios was based on the decomposition of local temperature/precipitation changes into components directly linked to the level of global warming, and components related to changes in the regional atmospheric circulation. In this study this decomposition is revisited utilizing the extensive modelling results from the CMIP5 model ensemble in support for the 5th IPCC assessment. Rather than selecting a number of GCMs based on performance metrics or relevant response features, a regression technique was developed to utilize all available model projections. The large number of projections allows a quantification of the separate contributions of emission scenarios, systematic model responses and natural variability to the total likelihood range. Natural variability plays a minor role in modelled differences in the global mean temperature response, but contributes for up to 50 % to the range of mean sea level pressure responses and local precipitation. Using key indicators (“steering variables”) for the temperature and circulation response, the range in local seasonal mean temperature and precipitation responses can be fairly well reproduced. More... »

PAGES

1683-1697

References to SciGraph publications

  • 1999-03. Oceanic forcing of the wintertime North Atlantic Oscillation and European climate in NATURE
  • 2003-10. Pattern Scaling: An Examination of the Accuracy of the Technique for Describing Future Climates in CLIMATIC CHANGE
  • 2005-06-20. Interdecadal variability of regional climate change: implications for the development of regional climate change scenarios in METEOROLOGY AND ATMOSPHERIC PHYSICS
  • 2011-10-15. Dynamics of future seasonal temperature trends and extremes in Europe: a multi-model analysis from CMIP3 in CLIMATE DYNAMICS
  • 2007-03-10. A study on combining global and regional climate model results for generating climate scenarios of temperature and precipitation for the Netherlands in CLIMATE DYNAMICS
  • 2011-12-07. EC-Earth V2.2: description and validation of a new seamless earth system prediction model in CLIMATE DYNAMICS
  • 2011-11-25. Observed and simulated impacts of the summer NAO in Europe: implications for projected drying in the Mediterranean region in CLIMATE DYNAMICS
  • 2008-08-23. Climate scenarios of sea level rise for the northeast Atlantic Ocean: a study including the effects of ocean dynamics and gravity changes induced by ice melt in CLIMATIC CHANGE
  • 2011-08-05. Understanding and partitioning future climates for Australian regions from CMIP3 using ocean warming indices in CLIMATIC CHANGE
  • 2012-05-23. Use of Representative Climate Futures in impact and adaptation assessment in CLIMATIC CHANGE
  • 2010-12-31. Uncertainty in climate change projections: the role of internal variability in CLIMATE DYNAMICS
  • 2012-02-05. Global warming under old and new scenarios using IPCC climate sensitivity range estimates in NATURE CLIMATE CHANGE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00382-013-1707-y

    DOI

    http://dx.doi.org/10.1007/s00382-013-1707-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1043453583


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Royal Netherlands Meteorological Institute (KNMI), PO Box 201, 3730 AE, De Bilt, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.8653.8", 
              "name": [
                "Royal Netherlands Meteorological Institute (KNMI), PO Box 201, 3730 AE, De Bilt, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van den Hurk", 
            "givenName": "Bart", 
            "id": "sg:person.010707714545.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707714545.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Royal Netherlands Meteorological Institute (KNMI), PO Box 201, 3730 AE, De Bilt, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.8653.8", 
              "name": [
                "Royal Netherlands Meteorological Institute (KNMI), PO Box 201, 3730 AE, De Bilt, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "van Oldenborgh", 
            "givenName": "Geert Jan", 
            "id": "sg:person.014342146261.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014342146261.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Royal Netherlands Meteorological Institute (KNMI), PO Box 201, 3730 AE, De Bilt, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.8653.8", 
              "name": [
                "Royal Netherlands Meteorological Institute (KNMI), PO Box 201, 3730 AE, De Bilt, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lenderink", 
            "givenName": "Geert", 
            "id": "sg:person.010547300007.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010547300007.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Royal Netherlands Meteorological Institute (KNMI), PO Box 201, 3730 AE, De Bilt, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.8653.8", 
              "name": [
                "Royal Netherlands Meteorological Institute (KNMI), PO Box 201, 3730 AE, De Bilt, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hazeleger", 
            "givenName": "Wilco", 
            "id": "sg:person.011535450107.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011535450107.75"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Royal Netherlands Meteorological Institute (KNMI), PO Box 201, 3730 AE, De Bilt, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.8653.8", 
              "name": [
                "Royal Netherlands Meteorological Institute (KNMI), PO Box 201, 3730 AE, De Bilt, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Haarsma", 
            "givenName": "Rein", 
            "id": "sg:person.07357625023.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07357625023.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Royal Netherlands Meteorological Institute (KNMI), PO Box 201, 3730 AE, De Bilt, The Netherlands", 
              "id": "http://www.grid.ac/institutes/grid.8653.8", 
              "name": [
                "Royal Netherlands Meteorological Institute (KNMI), PO Box 201, 3730 AE, De Bilt, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "de Vries", 
            "givenName": "Hylke", 
            "id": "sg:person.012631764555.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012631764555.02"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00382-011-1211-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001822071", 
              "https://doi.org/10.1007/s00382-011-1211-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/18648", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010854918", 
              "https://doi.org/10.1038/18648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026035305597", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035832790", 
              "https://doi.org/10.1023/a:1026035305597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-012-0471-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014559055", 
              "https://doi.org/10.1007/s10584-012-0471-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-010-0977-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021861148", 
              "https://doi.org/10.1007/s00382-010-0977-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-011-1228-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027144462", 
              "https://doi.org/10.1007/s00382-011-1228-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-008-9442-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008674793", 
              "https://doi.org/10.1007/s10584-008-9442-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-011-1195-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011138918", 
              "https://doi.org/10.1007/s00382-011-1195-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-007-0227-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028903730", 
              "https://doi.org/10.1007/s00382-007-0227-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00703-005-0118-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046091716", 
              "https://doi.org/10.1007/s00703-005-0118-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-011-0166-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047244903", 
              "https://doi.org/10.1007/s10584-011-0166-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nclimate1385", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047584368", 
              "https://doi.org/10.1038/nclimate1385"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-03-05", 
        "datePublishedReg": "2013-03-05", 
        "description": "For the construction of regional climate change scenarios spanning a relevant fraction of the spread in climate model projections, an inventory of major drivers of regional climate change is needed. For the Netherlands, a previous set of regional climate change scenarios was based on the decomposition of local temperature/precipitation changes into components directly linked to the level of global warming, and components related to changes in the regional atmospheric circulation. In this study this decomposition is revisited utilizing the extensive modelling results from the CMIP5 model ensemble in support for the 5th IPCC assessment. Rather than selecting a number of GCMs based on performance metrics or relevant response features, a regression technique was developed to utilize all available model projections. The large number of projections allows a quantification of the separate contributions of emission scenarios, systematic model responses and natural variability to the total likelihood range. Natural variability plays a minor role in modelled differences in the global mean temperature response, but contributes for up to 50\u00a0% to the range of mean sea level pressure responses and local precipitation. Using key indicators (\u201csteering variables\u201d) for the temperature and circulation response, the range in local seasonal mean temperature and precipitation responses can be fairly well reproduced.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00382-013-1707-y", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1049631", 
            "issn": [
              "0930-7575", 
              "1432-0894"
            ], 
            "name": "Climate Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5-6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "42"
          }
        ], 
        "keywords": [
          "regional climate change scenarios", 
          "climate change scenarios", 
          "model projections", 
          "natural variability", 
          "change scenarios", 
          "sea level pressure response", 
          "climate change", 
          "global mean temperature response", 
          "regional atmospheric circulation", 
          "CMIP5 model ensemble", 
          "climate model projections", 
          "mean climate change", 
          "mean temperature response", 
          "regional climate change", 
          "number of GCMs", 
          "seasonal mean temperature", 
          "atmospheric circulation", 
          "circulation response", 
          "precipitation response", 
          "precipitation changes", 
          "local precipitation", 
          "model ensemble", 
          "emission scenarios", 
          "IPCC assessments", 
          "likelihood range", 
          "global warming", 
          "model response", 
          "modelling results", 
          "mean temperature", 
          "temperature response", 
          "major driver", 
          "variability", 
          "minor role", 
          "projections", 
          "CMIP5", 
          "GCM", 
          "warming", 
          "precipitation", 
          "circulation", 
          "scenarios", 
          "separate contributions", 
          "drivers", 
          "changes", 
          "key indicators", 
          "ensemble", 
          "temperature", 
          "regression techniques", 
          "range", 
          "relevant fraction", 
          "response features", 
          "previous set", 
          "Inventory", 
          "components", 
          "contribution", 
          "indicators", 
          "fraction", 
          "Netherlands", 
          "response", 
          "features", 
          "quantification", 
          "large number", 
          "pressure response", 
          "decomposition", 
          "assessment", 
          "set", 
          "spread", 
          "results", 
          "metrics", 
          "differences", 
          "study", 
          "construction", 
          "levels", 
          "role", 
          "number", 
          "technique", 
          "performance metrics", 
          "support"
        ], 
        "name": "Drivers of mean climate change around the Netherlands derived from CMIP5", 
        "pagination": "1683-1697", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1043453583"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00382-013-1707-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00382-013-1707-y", 
          "https://app.dimensions.ai/details/publication/pub.1043453583"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_593.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00382-013-1707-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-013-1707-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-013-1707-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-013-1707-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-013-1707-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    217 TRIPLES      21 PREDICATES      113 URIs      93 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00382-013-1707-y schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 schema:author Nfcb6714f2f724b47a089ccf9467e2a53
    4 schema:citation sg:pub.10.1007/s00382-007-0227-z
    5 sg:pub.10.1007/s00382-010-0977-x
    6 sg:pub.10.1007/s00382-011-1195-x
    7 sg:pub.10.1007/s00382-011-1211-1
    8 sg:pub.10.1007/s00382-011-1228-5
    9 sg:pub.10.1007/s00703-005-0118-y
    10 sg:pub.10.1007/s10584-008-9442-9
    11 sg:pub.10.1007/s10584-011-0166-x
    12 sg:pub.10.1007/s10584-012-0471-z
    13 sg:pub.10.1023/a:1026035305597
    14 sg:pub.10.1038/18648
    15 sg:pub.10.1038/nclimate1385
    16 schema:datePublished 2013-03-05
    17 schema:datePublishedReg 2013-03-05
    18 schema:description For the construction of regional climate change scenarios spanning a relevant fraction of the spread in climate model projections, an inventory of major drivers of regional climate change is needed. For the Netherlands, a previous set of regional climate change scenarios was based on the decomposition of local temperature/precipitation changes into components directly linked to the level of global warming, and components related to changes in the regional atmospheric circulation. In this study this decomposition is revisited utilizing the extensive modelling results from the CMIP5 model ensemble in support for the 5th IPCC assessment. Rather than selecting a number of GCMs based on performance metrics or relevant response features, a regression technique was developed to utilize all available model projections. The large number of projections allows a quantification of the separate contributions of emission scenarios, systematic model responses and natural variability to the total likelihood range. Natural variability plays a minor role in modelled differences in the global mean temperature response, but contributes for up to 50 % to the range of mean sea level pressure responses and local precipitation. Using key indicators (“steering variables”) for the temperature and circulation response, the range in local seasonal mean temperature and precipitation responses can be fairly well reproduced.
    19 schema:genre article
    20 schema:isAccessibleForFree true
    21 schema:isPartOf N2a39867a46d44de49df359f32679fa8a
    22 Ned6e33f84dc043688253074a96f7ded9
    23 sg:journal.1049631
    24 schema:keywords CMIP5
    25 CMIP5 model ensemble
    26 GCM
    27 IPCC assessments
    28 Inventory
    29 Netherlands
    30 assessment
    31 atmospheric circulation
    32 change scenarios
    33 changes
    34 circulation
    35 circulation response
    36 climate change
    37 climate change scenarios
    38 climate model projections
    39 components
    40 construction
    41 contribution
    42 decomposition
    43 differences
    44 drivers
    45 emission scenarios
    46 ensemble
    47 features
    48 fraction
    49 global mean temperature response
    50 global warming
    51 indicators
    52 key indicators
    53 large number
    54 levels
    55 likelihood range
    56 local precipitation
    57 major driver
    58 mean climate change
    59 mean temperature
    60 mean temperature response
    61 metrics
    62 minor role
    63 model ensemble
    64 model projections
    65 model response
    66 modelling results
    67 natural variability
    68 number
    69 number of GCMs
    70 performance metrics
    71 precipitation
    72 precipitation changes
    73 precipitation response
    74 pressure response
    75 previous set
    76 projections
    77 quantification
    78 range
    79 regional atmospheric circulation
    80 regional climate change
    81 regional climate change scenarios
    82 regression techniques
    83 relevant fraction
    84 response
    85 response features
    86 results
    87 role
    88 scenarios
    89 sea level pressure response
    90 seasonal mean temperature
    91 separate contributions
    92 set
    93 spread
    94 study
    95 support
    96 technique
    97 temperature
    98 temperature response
    99 variability
    100 warming
    101 schema:name Drivers of mean climate change around the Netherlands derived from CMIP5
    102 schema:pagination 1683-1697
    103 schema:productId N8b592cdf62dc490192f36d581fd2f84d
    104 Neb8e4b39ddbd4682a59384308eef2f8f
    105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043453583
    106 https://doi.org/10.1007/s00382-013-1707-y
    107 schema:sdDatePublished 2022-09-02T15:56
    108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    109 schema:sdPublisher N4afb10fd069e41cfbbbd0e08c260199d
    110 schema:url https://doi.org/10.1007/s00382-013-1707-y
    111 sgo:license sg:explorer/license/
    112 sgo:sdDataset articles
    113 rdf:type schema:ScholarlyArticle
    114 N2a39867a46d44de49df359f32679fa8a schema:volumeNumber 42
    115 rdf:type schema:PublicationVolume
    116 N2ddfc108052d4536ad6eae8eb7c4f638 rdf:first sg:person.010547300007.01
    117 rdf:rest Nf677baa017b44f1ab7fc619c9fb75407
    118 N2f1d7f634209403db1fbe082d81365ef rdf:first sg:person.012631764555.02
    119 rdf:rest rdf:nil
    120 N4afb10fd069e41cfbbbd0e08c260199d schema:name Springer Nature - SN SciGraph project
    121 rdf:type schema:Organization
    122 N75fc967987714dbe830be808cc94f56b rdf:first sg:person.07357625023.38
    123 rdf:rest N2f1d7f634209403db1fbe082d81365ef
    124 N7f79cb64db364797926be37b613caab6 rdf:first sg:person.014342146261.81
    125 rdf:rest N2ddfc108052d4536ad6eae8eb7c4f638
    126 N8b592cdf62dc490192f36d581fd2f84d schema:name doi
    127 schema:value 10.1007/s00382-013-1707-y
    128 rdf:type schema:PropertyValue
    129 Neb8e4b39ddbd4682a59384308eef2f8f schema:name dimensions_id
    130 schema:value pub.1043453583
    131 rdf:type schema:PropertyValue
    132 Ned6e33f84dc043688253074a96f7ded9 schema:issueNumber 5-6
    133 rdf:type schema:PublicationIssue
    134 Nf677baa017b44f1ab7fc619c9fb75407 rdf:first sg:person.011535450107.75
    135 rdf:rest N75fc967987714dbe830be808cc94f56b
    136 Nfcb6714f2f724b47a089ccf9467e2a53 rdf:first sg:person.010707714545.84
    137 rdf:rest N7f79cb64db364797926be37b613caab6
    138 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Earth Sciences
    140 rdf:type schema:DefinedTerm
    141 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    142 schema:name Atmospheric Sciences
    143 rdf:type schema:DefinedTerm
    144 sg:journal.1049631 schema:issn 0930-7575
    145 1432-0894
    146 schema:name Climate Dynamics
    147 schema:publisher Springer Nature
    148 rdf:type schema:Periodical
    149 sg:person.010547300007.01 schema:affiliation grid-institutes:grid.8653.8
    150 schema:familyName Lenderink
    151 schema:givenName Geert
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010547300007.01
    153 rdf:type schema:Person
    154 sg:person.010707714545.84 schema:affiliation grid-institutes:grid.8653.8
    155 schema:familyName van den Hurk
    156 schema:givenName Bart
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707714545.84
    158 rdf:type schema:Person
    159 sg:person.011535450107.75 schema:affiliation grid-institutes:grid.8653.8
    160 schema:familyName Hazeleger
    161 schema:givenName Wilco
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011535450107.75
    163 rdf:type schema:Person
    164 sg:person.012631764555.02 schema:affiliation grid-institutes:grid.8653.8
    165 schema:familyName de Vries
    166 schema:givenName Hylke
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012631764555.02
    168 rdf:type schema:Person
    169 sg:person.014342146261.81 schema:affiliation grid-institutes:grid.8653.8
    170 schema:familyName van Oldenborgh
    171 schema:givenName Geert Jan
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014342146261.81
    173 rdf:type schema:Person
    174 sg:person.07357625023.38 schema:affiliation grid-institutes:grid.8653.8
    175 schema:familyName Haarsma
    176 schema:givenName Rein
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07357625023.38
    178 rdf:type schema:Person
    179 sg:pub.10.1007/s00382-007-0227-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1028903730
    180 https://doi.org/10.1007/s00382-007-0227-z
    181 rdf:type schema:CreativeWork
    182 sg:pub.10.1007/s00382-010-0977-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021861148
    183 https://doi.org/10.1007/s00382-010-0977-x
    184 rdf:type schema:CreativeWork
    185 sg:pub.10.1007/s00382-011-1195-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011138918
    186 https://doi.org/10.1007/s00382-011-1195-x
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/s00382-011-1211-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001822071
    189 https://doi.org/10.1007/s00382-011-1211-1
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s00382-011-1228-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027144462
    192 https://doi.org/10.1007/s00382-011-1228-5
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s00703-005-0118-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1046091716
    195 https://doi.org/10.1007/s00703-005-0118-y
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s10584-008-9442-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008674793
    198 https://doi.org/10.1007/s10584-008-9442-9
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s10584-011-0166-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047244903
    201 https://doi.org/10.1007/s10584-011-0166-x
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s10584-012-0471-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1014559055
    204 https://doi.org/10.1007/s10584-012-0471-z
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1023/a:1026035305597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035832790
    207 https://doi.org/10.1023/a:1026035305597
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/18648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010854918
    210 https://doi.org/10.1038/18648
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nclimate1385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047584368
    213 https://doi.org/10.1038/nclimate1385
    214 rdf:type schema:CreativeWork
    215 grid-institutes:grid.8653.8 schema:alternateName Royal Netherlands Meteorological Institute (KNMI), PO Box 201, 3730 AE, De Bilt, The Netherlands
    216 schema:name Royal Netherlands Meteorological Institute (KNMI), PO Box 201, 3730 AE, De Bilt, The Netherlands
    217 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...