A probabilistic quantification of the anthropogenic component of twentieth century global warming View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-11-08

AUTHORS

T. M. L. Wigley, B. D. Santer

ABSTRACT

This paper examines in detail the statement in the 2007 IPCC Fourth Assessment Report that “Most of the observed increase in global average temperatures since the mid-twentieth century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations”. We use a quantitative probabilistic analysis to evaluate this IPCC statement, and discuss the value of the statement in the policy context. For forcing by greenhouse gases (GHGs) only, we show that there is a greater than 90 % probability that the expected warming over 1950–2005 is larger than the total amount (not just “most”) of the observed warming. This is because, following current best estimates, negative aerosol forcing has substantially offset the GHG-induced warming. We also consider the expected warming from all anthropogenic forcings using the same probabilistic framework. This requires a re-assessment of the range of possible values for aerosol forcing. We provide evidence that the IPCC estimate for the upper bound of indirect aerosol forcing is almost certainly too high. Our results show that the expected warming due to all human influences since 1950 (including aerosol effects) is very similar to the observed warming. Including the effects of natural external forcing factors has a relatively small impact on our 1950–2005 results, but improves the correspondence between model and observations over 1900–2005. Over the longer period, however, externally forced changes are insufficient to explain the early twentieth century warming. We suggest that changes in the formation rate of North Atlantic Deep Water may have been a significant contributing factor. More... »

PAGES

1087-1102

References to SciGraph publications

  • 2011-09-07. A multimodel comparison of centennial Atlantic meridional overturning circulation variability in CLIMATE DYNAMICS
  • 2011-06-25. Mechanisms for decadal scale variability in a simulated Atlantic meridional overturning circulation in CLIMATE DYNAMICS
  • 1987-04. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate in NATURE
  • 2003-08-05. Probabilistic climate change projections using neural networks in CLIMATE DYNAMICS
  • 2009-04. Greenhouse-gas emission targets for limiting global warming to 2 °C in NATURE
  • 2002-04. Constraints on radiative forcing and future climate change from observations and climate model ensembles in NATURE
  • 2006-09. Variations in solar luminosity and their effect on the Earth's climate in NATURE
  • 2009-05-29. Uncertainties in climate stabilization in CLIMATIC CHANGE
  • 2006-08. Solar Irradiance Variability Since 1978 in SPACE SCIENCE REVIEWS
  • 2011-07-07. On the time-varying trend in global-mean surface temperature in CLIMATE DYNAMICS
  • 1995-12. Towards the detection and attribution of an anthropogenic effect on climate in CLIMATE DYNAMICS
  • 1987-11. Thermal expansion of sea water associated with global warming in NATURE
  • 2010-05-20. Estimation of global temperature trends: what’s important and what isn’t in CLIMATIC CHANGE
  • 2001-05. Use of an upwelling-diffusion energy balance climate model to simulate and diagnose A/OGCM results in CLIMATE DYNAMICS
  • 1989-06. Possible climate change due to SO2-derived cloud condensation nuclei in NATURE
  • 1994-02. An oscillation in the global climate system of period 65–70 years in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00382-012-1585-8

    DOI

    http://dx.doi.org/10.1007/s00382-012-1585-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040261896


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oceanography", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Adelaide, 5005, Adelaide, SA, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1010.0", 
              "name": [
                "National Center for Atmospheric Research, 80307, Boulder, CO, USA", 
                "University of Adelaide, 5005, Adelaide, SA, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wigley", 
            "givenName": "T. M. L.", 
            "id": "sg:person.016171504677.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016171504677.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, 94550, Livermore, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.250008.f", 
              "name": [
                "Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, 94550, Livermore, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Santer", 
            "givenName": "B. D.", 
            "id": "sg:person.01234767320.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234767320.60"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11214-006-9046-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025305341", 
              "https://doi.org/10.1007/s11214-006-9046-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00007931", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017112900", 
              "https://doi.org/10.1007/pl00007931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/339365a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038295809", 
              "https://doi.org/10.1038/339365a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/416719a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016686487", 
              "https://doi.org/10.1038/416719a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-011-1172-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028847636", 
              "https://doi.org/10.1007/s00382-011-1172-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-011-1128-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004620896", 
              "https://doi.org/10.1007/s00382-011-1128-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00223722", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041045612", 
              "https://doi.org/10.1007/bf00223722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/367723a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049213572", 
              "https://doi.org/10.1038/367723a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/330127a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016835893", 
              "https://doi.org/10.1038/330127a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/326655a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010037784", 
              "https://doi.org/10.1038/326655a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043594381", 
              "https://doi.org/10.1038/nature05072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-011-1124-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007150975", 
              "https://doi.org/10.1007/s00382-011-1124-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-003-0345-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034216523", 
              "https://doi.org/10.1007/s00382-003-0345-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-009-9585-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037085646", 
              "https://doi.org/10.1007/s10584-009-9585-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006156196", 
              "https://doi.org/10.1038/nature08017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-010-9836-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012085494", 
              "https://doi.org/10.1007/s10584-010-9836-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-11-08", 
        "datePublishedReg": "2012-11-08", 
        "description": "This paper examines in detail the statement in the 2007 IPCC Fourth Assessment Report that \u201cMost of the observed increase in global average temperatures since the mid-twentieth century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations\u201d. We use a quantitative probabilistic analysis to evaluate this IPCC statement, and discuss the value of the statement in the policy context. For forcing by greenhouse gases (GHGs) only, we show that there is a greater than 90\u00a0% probability that the expected warming over 1950\u20132005 is larger than the total amount (not just \u201cmost\u201d) of the observed warming. This is because, following current best estimates, negative aerosol forcing has substantially offset the GHG-induced warming. We also consider the expected warming from all anthropogenic forcings using the same probabilistic framework. This requires a re-assessment of the range of possible values for aerosol forcing. We provide evidence that the IPCC estimate for the upper bound of indirect aerosol forcing is almost certainly too high. Our results show that the expected warming due to all human influences since 1950 (including aerosol effects) is very similar to the observed warming. Including the effects of natural external forcing factors has a relatively small impact on our 1950\u20132005 results, but improves the correspondence between model and observations over 1900\u20132005. Over the longer period, however, externally forced changes are insufficient to explain the early twentieth century warming. We suggest that changes in the formation rate of North Atlantic Deep Water may have been a significant contributing factor.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00382-012-1585-8", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1049631", 
            "issn": [
              "0930-7575", 
              "1432-0894"
            ], 
            "name": "Climate Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5-6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "40"
          }
        ], 
        "keywords": [
          "aerosol forcing", 
          "greenhouse gases", 
          "observed warming", 
          "North Atlantic Deep Water", 
          "early twentieth century warming", 
          "anthropogenic greenhouse gas concentrations", 
          "IPCC Fourth Assessment Report", 
          "twentieth-century global warming", 
          "indirect aerosol forcing", 
          "Atlantic Deep Water", 
          "twentieth century warming", 
          "century global warming", 
          "Fourth Assessment Report", 
          "greenhouse gas concentrations", 
          "negative aerosol forcing", 
          "external forcing factors", 
          "global average temperature", 
          "current best estimate", 
          "anthropogenic forcing", 
          "forcing factors", 
          "century warming", 
          "anthropogenic components", 
          "deep water", 
          "IPCC estimates", 
          "Assessment Report", 
          "human influence", 
          "forcing", 
          "warming", 
          "observed increase", 
          "global warming", 
          "gas concentration", 
          "average temperature", 
          "same probabilistic framework", 
          "best estimate", 
          "probabilistic quantification", 
          "small impact", 
          "mid-twentieth century", 
          "long period", 
          "estimates", 
          "probabilistic framework", 
          "total amount", 
          "probabilistic analysis", 
          "formation rate", 
          "water", 
          "gases", 
          "significant contributing factor", 
          "changes", 
          "century", 
          "period", 
          "temperature", 
          "values", 
          "increase", 
          "concentration", 
          "impact", 
          "contributing factor", 
          "amount", 
          "range", 
          "influence", 
          "model", 
          "evidence", 
          "correspondence", 
          "quantification", 
          "results", 
          "components", 
          "possible values", 
          "detail", 
          "analysis", 
          "factors", 
          "rate", 
          "framework", 
          "probability", 
          "context", 
          "effect", 
          "paper", 
          "policy context", 
          "statements", 
          "report", 
          "observations", 
          "quantitative probabilistic analysis"
        ], 
        "name": "A probabilistic quantification of the anthropogenic component of twentieth century global warming", 
        "pagination": "1087-1102", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040261896"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00382-012-1585-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00382-012-1585-8", 
          "https://app.dimensions.ai/details/publication/pub.1040261896"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_567.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00382-012-1585-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-012-1585-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-012-1585-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-012-1585-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-012-1585-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    219 TRIPLES      21 PREDICATES      121 URIs      95 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00382-012-1585-8 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 anzsrc-for:0405
    4 anzsrc-for:0406
    5 schema:author N61ba95d827794090901984070e064b10
    6 schema:citation sg:pub.10.1007/bf00223722
    7 sg:pub.10.1007/pl00007931
    8 sg:pub.10.1007/s00382-003-0345-1
    9 sg:pub.10.1007/s00382-011-1124-z
    10 sg:pub.10.1007/s00382-011-1128-8
    11 sg:pub.10.1007/s00382-011-1172-4
    12 sg:pub.10.1007/s10584-009-9585-3
    13 sg:pub.10.1007/s10584-010-9836-3
    14 sg:pub.10.1007/s11214-006-9046-5
    15 sg:pub.10.1038/326655a0
    16 sg:pub.10.1038/330127a0
    17 sg:pub.10.1038/339365a0
    18 sg:pub.10.1038/367723a0
    19 sg:pub.10.1038/416719a
    20 sg:pub.10.1038/nature05072
    21 sg:pub.10.1038/nature08017
    22 schema:datePublished 2012-11-08
    23 schema:datePublishedReg 2012-11-08
    24 schema:description This paper examines in detail the statement in the 2007 IPCC Fourth Assessment Report that “Most of the observed increase in global average temperatures since the mid-twentieth century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations”. We use a quantitative probabilistic analysis to evaluate this IPCC statement, and discuss the value of the statement in the policy context. For forcing by greenhouse gases (GHGs) only, we show that there is a greater than 90 % probability that the expected warming over 1950–2005 is larger than the total amount (not just “most”) of the observed warming. This is because, following current best estimates, negative aerosol forcing has substantially offset the GHG-induced warming. We also consider the expected warming from all anthropogenic forcings using the same probabilistic framework. This requires a re-assessment of the range of possible values for aerosol forcing. We provide evidence that the IPCC estimate for the upper bound of indirect aerosol forcing is almost certainly too high. Our results show that the expected warming due to all human influences since 1950 (including aerosol effects) is very similar to the observed warming. Including the effects of natural external forcing factors has a relatively small impact on our 1950–2005 results, but improves the correspondence between model and observations over 1900–2005. Over the longer period, however, externally forced changes are insufficient to explain the early twentieth century warming. We suggest that changes in the formation rate of North Atlantic Deep Water may have been a significant contributing factor.
    25 schema:genre article
    26 schema:isAccessibleForFree false
    27 schema:isPartOf N55d63c4de734471099313ec6c3614055
    28 N6d168116a40e462e8cf4ef0cdc77e7d1
    29 sg:journal.1049631
    30 schema:keywords Assessment Report
    31 Atlantic Deep Water
    32 Fourth Assessment Report
    33 IPCC Fourth Assessment Report
    34 IPCC estimates
    35 North Atlantic Deep Water
    36 aerosol forcing
    37 amount
    38 analysis
    39 anthropogenic components
    40 anthropogenic forcing
    41 anthropogenic greenhouse gas concentrations
    42 average temperature
    43 best estimate
    44 century
    45 century global warming
    46 century warming
    47 changes
    48 components
    49 concentration
    50 context
    51 contributing factor
    52 correspondence
    53 current best estimate
    54 deep water
    55 detail
    56 early twentieth century warming
    57 effect
    58 estimates
    59 evidence
    60 external forcing factors
    61 factors
    62 forcing
    63 forcing factors
    64 formation rate
    65 framework
    66 gas concentration
    67 gases
    68 global average temperature
    69 global warming
    70 greenhouse gas concentrations
    71 greenhouse gases
    72 human influence
    73 impact
    74 increase
    75 indirect aerosol forcing
    76 influence
    77 long period
    78 mid-twentieth century
    79 model
    80 negative aerosol forcing
    81 observations
    82 observed increase
    83 observed warming
    84 paper
    85 period
    86 policy context
    87 possible values
    88 probabilistic analysis
    89 probabilistic framework
    90 probabilistic quantification
    91 probability
    92 quantification
    93 quantitative probabilistic analysis
    94 range
    95 rate
    96 report
    97 results
    98 same probabilistic framework
    99 significant contributing factor
    100 small impact
    101 statements
    102 temperature
    103 total amount
    104 twentieth century warming
    105 twentieth-century global warming
    106 values
    107 warming
    108 water
    109 schema:name A probabilistic quantification of the anthropogenic component of twentieth century global warming
    110 schema:pagination 1087-1102
    111 schema:productId N441edec0c12d4429ba55eed1d8536bbe
    112 N9ca54c684920450eb27dbdec5acfa293
    113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040261896
    114 https://doi.org/10.1007/s00382-012-1585-8
    115 schema:sdDatePublished 2022-12-01T06:30
    116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    117 schema:sdPublisher Nab974e95b34f4d76975ebfe2b34a4afc
    118 schema:url https://doi.org/10.1007/s00382-012-1585-8
    119 sgo:license sg:explorer/license/
    120 sgo:sdDataset articles
    121 rdf:type schema:ScholarlyArticle
    122 N441edec0c12d4429ba55eed1d8536bbe schema:name doi
    123 schema:value 10.1007/s00382-012-1585-8
    124 rdf:type schema:PropertyValue
    125 N55d63c4de734471099313ec6c3614055 schema:volumeNumber 40
    126 rdf:type schema:PublicationVolume
    127 N61ba95d827794090901984070e064b10 rdf:first sg:person.016171504677.21
    128 rdf:rest N795f9527a19045ebb2ca0c63ef60c6f8
    129 N6d168116a40e462e8cf4ef0cdc77e7d1 schema:issueNumber 5-6
    130 rdf:type schema:PublicationIssue
    131 N795f9527a19045ebb2ca0c63ef60c6f8 rdf:first sg:person.01234767320.60
    132 rdf:rest rdf:nil
    133 N9ca54c684920450eb27dbdec5acfa293 schema:name dimensions_id
    134 schema:value pub.1040261896
    135 rdf:type schema:PropertyValue
    136 Nab974e95b34f4d76975ebfe2b34a4afc schema:name Springer Nature - SN SciGraph project
    137 rdf:type schema:Organization
    138 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Earth Sciences
    140 rdf:type schema:DefinedTerm
    141 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    142 schema:name Atmospheric Sciences
    143 rdf:type schema:DefinedTerm
    144 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
    145 schema:name Oceanography
    146 rdf:type schema:DefinedTerm
    147 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Physical Geography and Environmental Geoscience
    149 rdf:type schema:DefinedTerm
    150 sg:journal.1049631 schema:issn 0930-7575
    151 1432-0894
    152 schema:name Climate Dynamics
    153 schema:publisher Springer Nature
    154 rdf:type schema:Periodical
    155 sg:person.01234767320.60 schema:affiliation grid-institutes:grid.250008.f
    156 schema:familyName Santer
    157 schema:givenName B. D.
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234767320.60
    159 rdf:type schema:Person
    160 sg:person.016171504677.21 schema:affiliation grid-institutes:grid.1010.0
    161 schema:familyName Wigley
    162 schema:givenName T. M. L.
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016171504677.21
    164 rdf:type schema:Person
    165 sg:pub.10.1007/bf00223722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041045612
    166 https://doi.org/10.1007/bf00223722
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/pl00007931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017112900
    169 https://doi.org/10.1007/pl00007931
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s00382-003-0345-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034216523
    172 https://doi.org/10.1007/s00382-003-0345-1
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s00382-011-1124-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1007150975
    175 https://doi.org/10.1007/s00382-011-1124-z
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s00382-011-1128-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004620896
    178 https://doi.org/10.1007/s00382-011-1128-8
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s00382-011-1172-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028847636
    181 https://doi.org/10.1007/s00382-011-1172-4
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s10584-009-9585-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037085646
    184 https://doi.org/10.1007/s10584-009-9585-3
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s10584-010-9836-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012085494
    187 https://doi.org/10.1007/s10584-010-9836-3
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s11214-006-9046-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025305341
    190 https://doi.org/10.1007/s11214-006-9046-5
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/326655a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010037784
    193 https://doi.org/10.1038/326655a0
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/330127a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016835893
    196 https://doi.org/10.1038/330127a0
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/339365a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038295809
    199 https://doi.org/10.1038/339365a0
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/367723a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049213572
    202 https://doi.org/10.1038/367723a0
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/416719a schema:sameAs https://app.dimensions.ai/details/publication/pub.1016686487
    205 https://doi.org/10.1038/416719a
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nature05072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043594381
    208 https://doi.org/10.1038/nature05072
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/nature08017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006156196
    211 https://doi.org/10.1038/nature08017
    212 rdf:type schema:CreativeWork
    213 grid-institutes:grid.1010.0 schema:alternateName University of Adelaide, 5005, Adelaide, SA, Australia
    214 schema:name National Center for Atmospheric Research, 80307, Boulder, CO, USA
    215 University of Adelaide, 5005, Adelaide, SA, Australia
    216 rdf:type schema:Organization
    217 grid-institutes:grid.250008.f schema:alternateName Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, 94550, Livermore, CA, USA
    218 schema:name Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, 94550, Livermore, CA, USA
    219 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...