Impact of vegetation variability on potential predictability and skill of EC-Earth simulations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-10-27

AUTHORS

Martina Weiss, Bart van den Hurk, Reindert Haarsma, Wilco Hazeleger

ABSTRACT

Climate models often use a simplified and static representation of vegetation characteristics to determine fluxes of energy, momentum and water vapour between surface and lower atmosphere. In order to analyse the impact of short term variability in vegetation phenology, we use remotely-sensed leaf area index and albedo products to examine the role of vegetation in the coupled land–atmosphere system. Perfect model experiments are carried out to determine the impact of realistic temporal variability of vegetation on potential predictability of evaporation and temperature, as well as model skill of EC-Earth simulations. The length of the simulation period is hereby limited by the availability of satellite products to 2000–2010. While a realistic representation of vegetation positively influences the simulation of evaporation and its potential predictability, a positive impact on 2 m temperature is of smaller magnitude, regionally confined and more pronounced in climatically extreme years. More... »

PAGES

2733-2746

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-012-1572-0

DOI

http://dx.doi.org/10.1007/s00382-012-1572-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048712796


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weiss", 
        "givenName": "Martina", 
        "id": "sg:person.016561105411.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016561105411.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van den Hurk", 
        "givenName": "Bart", 
        "id": "sg:person.010707714545.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707714545.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haarsma", 
        "givenName": "Reindert", 
        "id": "sg:person.011751264004.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011751264004.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hazeleger", 
        "givenName": "Wilco", 
        "id": "sg:person.011535450107.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011535450107.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00382-004-0419-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047355659", 
          "https://doi.org/10.1007/s00382-004-0419-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-010-0956-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015241299", 
          "https://doi.org/10.1007/s00382-010-0956-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009862764", 
          "https://doi.org/10.1007/s003820050238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-011-1018-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044407609", 
          "https://doi.org/10.1007/s00382-011-1018-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-011-1228-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027144462", 
          "https://doi.org/10.1007/s00382-011-1228-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-10-27", 
    "datePublishedReg": "2012-10-27", 
    "description": "Climate models often use a simplified and static representation of vegetation characteristics to determine fluxes of energy, momentum and water vapour between surface and lower atmosphere. In order to analyse the impact of short term variability in vegetation phenology, we use remotely-sensed leaf area index and albedo products to examine the role of vegetation in the coupled land\u2013atmosphere system. Perfect model experiments are carried out to determine the impact of realistic temporal variability of vegetation on potential predictability of evaporation and temperature, as well as model skill of EC-Earth simulations. The length of the simulation period is hereby limited by the availability of satellite products to 2000\u20132010. While a realistic representation of vegetation positively influences the simulation of evaporation and its potential predictability, a positive impact on 2\u00a0m temperature is of smaller magnitude, regionally confined and more pronounced in climatically extreme years.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-012-1572-0", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3775473", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "keywords": [
      "EC-Earth simulations", 
      "potential predictability", 
      "land\u2013atmosphere system", 
      "perfect model experiments", 
      "role of vegetation", 
      "simulation of evaporation", 
      "short-term variability", 
      "climate models", 
      "model skill", 
      "satellite products", 
      "flux of energy", 
      "vegetation variability", 
      "extreme years", 
      "lower atmosphere", 
      "temporal variability", 
      "albedo products", 
      "simulation period", 
      "term variability", 
      "vegetation phenology", 
      "water vapor", 
      "model experiments", 
      "vegetation characteristics", 
      "realistic representation", 
      "leaf area index", 
      "vegetation", 
      "variability", 
      "small magnitude", 
      "area index", 
      "predictability", 
      "evaporation", 
      "atmosphere", 
      "flux", 
      "impact", 
      "vapor", 
      "temperature", 
      "simulations", 
      "magnitude", 
      "phenology", 
      "period", 
      "surface", 
      "availability", 
      "model", 
      "years", 
      "characteristics", 
      "index", 
      "representation", 
      "momentum", 
      "products", 
      "positive impact", 
      "order", 
      "skills", 
      "experiments", 
      "system", 
      "role", 
      "hereby", 
      "energy", 
      "length", 
      "static representation"
    ], 
    "name": "Impact of vegetation variability on potential predictability and skill of EC-Earth simulations", 
    "pagination": "2733-2746", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048712796"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-012-1572-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-012-1572-0", 
      "https://app.dimensions.ai/details/publication/pub.1048712796"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_569.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-012-1572-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-012-1572-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-012-1572-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-012-1572-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-012-1572-0'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      21 PREDICATES      87 URIs      74 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-012-1572-0 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author Na2bfee64370e4480833e39a864681f44
4 schema:citation sg:pub.10.1007/s00382-004-0419-8
5 sg:pub.10.1007/s00382-010-0956-2
6 sg:pub.10.1007/s00382-011-1018-0
7 sg:pub.10.1007/s00382-011-1228-5
8 sg:pub.10.1007/s003820050238
9 schema:datePublished 2012-10-27
10 schema:datePublishedReg 2012-10-27
11 schema:description Climate models often use a simplified and static representation of vegetation characteristics to determine fluxes of energy, momentum and water vapour between surface and lower atmosphere. In order to analyse the impact of short term variability in vegetation phenology, we use remotely-sensed leaf area index and albedo products to examine the role of vegetation in the coupled land–atmosphere system. Perfect model experiments are carried out to determine the impact of realistic temporal variability of vegetation on potential predictability of evaporation and temperature, as well as model skill of EC-Earth simulations. The length of the simulation period is hereby limited by the availability of satellite products to 2000–2010. While a realistic representation of vegetation positively influences the simulation of evaporation and its potential predictability, a positive impact on 2 m temperature is of smaller magnitude, regionally confined and more pronounced in climatically extreme years.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf Nb53f80fa74a94b6983640e6d33917aba
15 Nb545702486b149abb7689e09eed2be81
16 sg:journal.1049631
17 schema:keywords EC-Earth simulations
18 albedo products
19 area index
20 atmosphere
21 availability
22 characteristics
23 climate models
24 energy
25 evaporation
26 experiments
27 extreme years
28 flux
29 flux of energy
30 hereby
31 impact
32 index
33 land–atmosphere system
34 leaf area index
35 length
36 lower atmosphere
37 magnitude
38 model
39 model experiments
40 model skill
41 momentum
42 order
43 perfect model experiments
44 period
45 phenology
46 positive impact
47 potential predictability
48 predictability
49 products
50 realistic representation
51 representation
52 role
53 role of vegetation
54 satellite products
55 short-term variability
56 simulation of evaporation
57 simulation period
58 simulations
59 skills
60 small magnitude
61 static representation
62 surface
63 system
64 temperature
65 temporal variability
66 term variability
67 vapor
68 variability
69 vegetation
70 vegetation characteristics
71 vegetation phenology
72 vegetation variability
73 water vapor
74 years
75 schema:name Impact of vegetation variability on potential predictability and skill of EC-Earth simulations
76 schema:pagination 2733-2746
77 schema:productId N88428e0279784cf781db29de98321b5b
78 Na842f53a5bd94198b37544c700ab039b
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048712796
80 https://doi.org/10.1007/s00382-012-1572-0
81 schema:sdDatePublished 2022-10-01T06:37
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher Nf7ea18f82512416a9fd9f54caabb61f6
84 schema:url https://doi.org/10.1007/s00382-012-1572-0
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N88428e0279784cf781db29de98321b5b schema:name dimensions_id
89 schema:value pub.1048712796
90 rdf:type schema:PropertyValue
91 N8fbf9352e2f64d9ebbed533030c41815 rdf:first sg:person.011535450107.75
92 rdf:rest rdf:nil
93 Na2bfee64370e4480833e39a864681f44 rdf:first sg:person.016561105411.30
94 rdf:rest Neb1b348613734c9b86aa5c3d209f255d
95 Na842f53a5bd94198b37544c700ab039b schema:name doi
96 schema:value 10.1007/s00382-012-1572-0
97 rdf:type schema:PropertyValue
98 Nb53f80fa74a94b6983640e6d33917aba schema:volumeNumber 39
99 rdf:type schema:PublicationVolume
100 Nb545702486b149abb7689e09eed2be81 schema:issueNumber 11
101 rdf:type schema:PublicationIssue
102 Ndb5c240a228a4f508bd59a3df5fcb122 rdf:first sg:person.011751264004.29
103 rdf:rest N8fbf9352e2f64d9ebbed533030c41815
104 Neb1b348613734c9b86aa5c3d209f255d rdf:first sg:person.010707714545.84
105 rdf:rest Ndb5c240a228a4f508bd59a3df5fcb122
106 Nf7ea18f82512416a9fd9f54caabb61f6 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
109 schema:name Earth Sciences
110 rdf:type schema:DefinedTerm
111 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
112 schema:name Atmospheric Sciences
113 rdf:type schema:DefinedTerm
114 sg:grant.3775473 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-012-1572-0
115 rdf:type schema:MonetaryGrant
116 sg:journal.1049631 schema:issn 0930-7575
117 1432-0894
118 schema:name Climate Dynamics
119 schema:publisher Springer Nature
120 rdf:type schema:Periodical
121 sg:person.010707714545.84 schema:affiliation grid-institutes:grid.8653.8
122 schema:familyName van den Hurk
123 schema:givenName Bart
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707714545.84
125 rdf:type schema:Person
126 sg:person.011535450107.75 schema:affiliation grid-institutes:grid.8653.8
127 schema:familyName Hazeleger
128 schema:givenName Wilco
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011535450107.75
130 rdf:type schema:Person
131 sg:person.011751264004.29 schema:affiliation grid-institutes:grid.8653.8
132 schema:familyName Haarsma
133 schema:givenName Reindert
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011751264004.29
135 rdf:type schema:Person
136 sg:person.016561105411.30 schema:affiliation grid-institutes:grid.8653.8
137 schema:familyName Weiss
138 schema:givenName Martina
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016561105411.30
140 rdf:type schema:Person
141 sg:pub.10.1007/s00382-004-0419-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047355659
142 https://doi.org/10.1007/s00382-004-0419-8
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s00382-010-0956-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015241299
145 https://doi.org/10.1007/s00382-010-0956-2
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s00382-011-1018-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044407609
148 https://doi.org/10.1007/s00382-011-1018-0
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s00382-011-1228-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027144462
151 https://doi.org/10.1007/s00382-011-1228-5
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s003820050238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009862764
154 https://doi.org/10.1007/s003820050238
155 rdf:type schema:CreativeWork
156 grid-institutes:grid.8653.8 schema:alternateName Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
157 schema:name Royal Netherlands Meteorological Institute (KNMI), De Bilt, The Netherlands
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...