A step-response approach for predicting and understanding non-linear precipitation changes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-10-30

AUTHORS

Peter Good, William Ingram, F. Hugo Lambert, Jason A. Lowe, Jonathan M. Gregory, Mark J. Webb, Mark A. Ringer, Peili Wu

ABSTRACT

Future changes in precipitation represent one of the most important and uncertain possible effects of future climate change. We demonstrate a new approach based on idealised CO2 step-change general circulation model (GCM) experiments, and test it using the HadCM3 GCM. The approach has two purposes: to help understand GCM projections, and to build and test a fast simple model for precipitation projections under a wide range of forcing scenarios. Overall, we find that the CO2 step experiments contain much information that is relevant to transient projections, but that is more easily extracted due to the idealised experimental design. We find that the temporary acceleration of global-mean precipitation in this GCM following CO2 ramp-down cannot be fully explained simply using linear responses to CO2 and temperature. A more complete explanation can be achieved with an additional term representing interaction between CO2 and temperature effects. Energy budget analysis of this term is dominated by clear-sky outgoing long-wave radiation (CSOLR) and sensible heating, but cloud and short-wave terms also contribute. The dominant CSOLR interaction is attributable to increased CO2 raising the mean emission level to colder altitudes, which reduces the rate of increase of OLR with warming. This behaviour can be reproduced by our simple model. On regional scales, we compare our approach with linear ‘pattern-scaling’ (scaling regional responses by global-mean temperature change). In regions where our model predicts linear change, pattern-scaling works equally well. In some regions, however, substantial deviations from linear scaling with global-mean temperature are found, and our simple model provides more accurate projections. The idealised experiments reveal a complex pattern of non-linear behaviour. There are likely to be a range of controlling physical mechanisms, different from those dominating the global-mean response, requiring focussed investigation for individual regions, and in other GCMs. More... »

PAGES

2789-2803

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-012-1571-1

DOI

http://dx.doi.org/10.1007/s00382-012-1571-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012359911


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Met Office Hadley Centre, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office Hadley Centre, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Good", 
        "givenName": "Peter", 
        "id": "sg:person.014703234061.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014703234061.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Met Office Hadley Centre, Exeter, UK", 
            "Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ingram", 
        "givenName": "William", 
        "id": "sg:person.014131530715.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014131530715.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.8391.3", 
          "name": [
            "College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lambert", 
        "givenName": "F. Hugo", 
        "id": "sg:person.0744572121.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744572121.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office Hadley Centre, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office Hadley Centre, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lowe", 
        "givenName": "Jason A.", 
        "id": "sg:person.011066117233.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066117233.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Meteorology, Walker Institute for Climate System Research, University of Reading, Reading, UK", 
          "id": "http://www.grid.ac/institutes/grid.9435.b", 
          "name": [
            "Met Office Hadley Centre, Exeter, UK", 
            "Department of Meteorology, Walker Institute for Climate System Research, University of Reading, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gregory", 
        "givenName": "Jonathan M.", 
        "id": "sg:person.0776106250.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776106250.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office Hadley Centre, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office Hadley Centre, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Webb", 
        "givenName": "Mark J.", 
        "id": "sg:person.010673066557.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010673066557.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office Hadley Centre, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office Hadley Centre, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ringer", 
        "givenName": "Mark A.", 
        "id": "sg:person.011206742225.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011206742225.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office Hadley Centre, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office Hadley Centre, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Peili", 
        "id": "sg:person.015010712155.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015010712155.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00382-008-0466-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048586312", 
          "https://doi.org/10.1007/s00382-008-0466-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046916950", 
          "https://doi.org/10.1038/nature01092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820000067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022442065", 
          "https://doi.org/10.1007/s003820000067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/42924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007351501", 
          "https://doi.org/10.1038/42924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002170907", 
          "https://doi.org/10.1007/s003820050009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-003-0365-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012281891", 
          "https://doi.org/10.1007/s00382-003-0365-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00210008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012875011", 
          "https://doi.org/10.1007/bf00210008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015242699", 
          "https://doi.org/10.1007/s003820050010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026035305597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035832790", 
          "https://doi.org/10.1023/a:1026035305597"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-10-30", 
    "datePublishedReg": "2012-10-30", 
    "description": "Future changes in precipitation represent one of the most important and uncertain possible effects of future climate change. We demonstrate a new approach based on idealised CO2 step-change general circulation model (GCM) experiments, and test it using the HadCM3 GCM. The approach has two purposes: to help understand GCM projections, and to build and test a fast simple model for precipitation projections under a wide range of forcing scenarios. Overall, we find that the CO2 step experiments contain much information that is relevant to transient projections, but that is more easily extracted due to the idealised experimental design. We find that the temporary acceleration of global-mean precipitation in this GCM following CO2 ramp-down cannot be fully explained simply using linear responses to CO2 and temperature. A more complete explanation can be achieved with an additional term representing interaction between CO2 and temperature effects. Energy budget analysis of this term is dominated by clear-sky outgoing long-wave radiation (CSOLR) and sensible heating, but cloud and short-wave terms also contribute. The dominant CSOLR interaction is attributable to increased CO2 raising the mean emission level to colder altitudes, which reduces the rate of increase of OLR with warming. This behaviour can be reproduced by our simple model. On regional scales, we compare our approach with linear \u2018pattern-scaling\u2019 (scaling regional responses by global-mean temperature change). In regions where our model predicts linear change, pattern-scaling works equally well. In some regions, however, substantial deviations from linear scaling with global-mean temperature are found, and our simple model provides more accurate projections. The idealised experiments reveal a complex pattern of non-linear behaviour. There are likely to be a range of controlling physical mechanisms, different from those dominating the global-mean response, requiring focussed investigation for individual regions, and in other GCMs.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-012-1571-1", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7037241", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.12915243", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2753871", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "keywords": [
      "clear\u2010sky outgoing long\u2010wave radiation", 
      "general circulation model experiments", 
      "outgoing long-wave radiation", 
      "global mean precipitation", 
      "global mean temperature", 
      "global mean response", 
      "future climate change", 
      "long-wave radiation", 
      "energy budget analysis", 
      "precipitation projections", 
      "GCM projections", 
      "precipitation changes", 
      "HadCM3 GCM", 
      "sensible heating", 
      "future changes", 
      "budget analysis", 
      "regional scale", 
      "climate change", 
      "step response approach", 
      "GCM", 
      "accurate projections", 
      "model experiments", 
      "mean emission levels", 
      "simple model", 
      "precipitation", 
      "temporary acceleration", 
      "physical mechanisms", 
      "CO2", 
      "transient projections", 
      "rate of increase", 
      "projections", 
      "complex patterns", 
      "region", 
      "warming", 
      "individual regions", 
      "OLR", 
      "linear scaling", 
      "altitude", 
      "cloud", 
      "changes", 
      "linear change", 
      "possible effects", 
      "substantial deviations", 
      "temperature", 
      "complete explanation", 
      "temperature effects", 
      "model", 
      "scale", 
      "wide range", 
      "range", 
      "scenarios", 
      "heating", 
      "patterns", 
      "radiation", 
      "acceleration", 
      "non-linear behavior", 
      "experiments", 
      "emission levels", 
      "explanation", 
      "increase", 
      "response", 
      "step experiments", 
      "terms", 
      "interaction", 
      "deviation", 
      "scaling", 
      "new approach", 
      "investigation", 
      "analysis", 
      "additional terms", 
      "rate", 
      "information", 
      "linear response", 
      "approach", 
      "effect", 
      "levels", 
      "behavior", 
      "mechanism", 
      "work", 
      "purpose", 
      "experimental design", 
      "design"
    ], 
    "name": "A step-response approach for predicting and understanding non-linear precipitation changes", 
    "pagination": "2789-2803", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012359911"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-012-1571-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-012-1571-1", 
      "https://app.dimensions.ai/details/publication/pub.1012359911"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_559.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-012-1571-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-012-1571-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-012-1571-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-012-1571-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-012-1571-1'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      115 URIs      98 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-012-1571-1 schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author N7acb110ffa804ae18fe01ad204f0c1eb
4 schema:citation sg:pub.10.1007/bf00210008
5 sg:pub.10.1007/s00382-003-0365-x
6 sg:pub.10.1007/s00382-008-0466-7
7 sg:pub.10.1007/s003820000067
8 sg:pub.10.1007/s003820050009
9 sg:pub.10.1007/s003820050010
10 sg:pub.10.1023/a:1026035305597
11 sg:pub.10.1038/42924
12 sg:pub.10.1038/nature01092
13 schema:datePublished 2012-10-30
14 schema:datePublishedReg 2012-10-30
15 schema:description Future changes in precipitation represent one of the most important and uncertain possible effects of future climate change. We demonstrate a new approach based on idealised CO2 step-change general circulation model (GCM) experiments, and test it using the HadCM3 GCM. The approach has two purposes: to help understand GCM projections, and to build and test a fast simple model for precipitation projections under a wide range of forcing scenarios. Overall, we find that the CO2 step experiments contain much information that is relevant to transient projections, but that is more easily extracted due to the idealised experimental design. We find that the temporary acceleration of global-mean precipitation in this GCM following CO2 ramp-down cannot be fully explained simply using linear responses to CO2 and temperature. A more complete explanation can be achieved with an additional term representing interaction between CO2 and temperature effects. Energy budget analysis of this term is dominated by clear-sky outgoing long-wave radiation (CSOLR) and sensible heating, but cloud and short-wave terms also contribute. The dominant CSOLR interaction is attributable to increased CO2 raising the mean emission level to colder altitudes, which reduces the rate of increase of OLR with warming. This behaviour can be reproduced by our simple model. On regional scales, we compare our approach with linear ‘pattern-scaling’ (scaling regional responses by global-mean temperature change). In regions where our model predicts linear change, pattern-scaling works equally well. In some regions, however, substantial deviations from linear scaling with global-mean temperature are found, and our simple model provides more accurate projections. The idealised experiments reveal a complex pattern of non-linear behaviour. There are likely to be a range of controlling physical mechanisms, different from those dominating the global-mean response, requiring focussed investigation for individual regions, and in other GCMs.
16 schema:genre article
17 schema:isAccessibleForFree false
18 schema:isPartOf N1db24b009b60425888abd06811eb8160
19 N239ba39c8efc4423a1a926a2b31f7350
20 sg:journal.1049631
21 schema:keywords CO2
22 GCM
23 GCM projections
24 HadCM3 GCM
25 OLR
26 acceleration
27 accurate projections
28 additional terms
29 altitude
30 analysis
31 approach
32 behavior
33 budget analysis
34 changes
35 clear‐sky outgoing long‐wave radiation
36 climate change
37 cloud
38 complete explanation
39 complex patterns
40 design
41 deviation
42 effect
43 emission levels
44 energy budget analysis
45 experimental design
46 experiments
47 explanation
48 future changes
49 future climate change
50 general circulation model experiments
51 global mean precipitation
52 global mean response
53 global mean temperature
54 heating
55 increase
56 individual regions
57 information
58 interaction
59 investigation
60 levels
61 linear change
62 linear response
63 linear scaling
64 long-wave radiation
65 mean emission levels
66 mechanism
67 model
68 model experiments
69 new approach
70 non-linear behavior
71 outgoing long-wave radiation
72 patterns
73 physical mechanisms
74 possible effects
75 precipitation
76 precipitation changes
77 precipitation projections
78 projections
79 purpose
80 radiation
81 range
82 rate
83 rate of increase
84 region
85 regional scale
86 response
87 scale
88 scaling
89 scenarios
90 sensible heating
91 simple model
92 step experiments
93 step response approach
94 substantial deviations
95 temperature
96 temperature effects
97 temporary acceleration
98 terms
99 transient projections
100 warming
101 wide range
102 work
103 schema:name A step-response approach for predicting and understanding non-linear precipitation changes
104 schema:pagination 2789-2803
105 schema:productId N1b4a85b061ed4b02b42ff21325995642
106 N21516aa897764eb994bc9de13974bbd7
107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012359911
108 https://doi.org/10.1007/s00382-012-1571-1
109 schema:sdDatePublished 2022-09-02T15:56
110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
111 schema:sdPublisher Nb22d834ac5134b23ab0b3a6bc2d85ab8
112 schema:url https://doi.org/10.1007/s00382-012-1571-1
113 sgo:license sg:explorer/license/
114 sgo:sdDataset articles
115 rdf:type schema:ScholarlyArticle
116 N1b4a85b061ed4b02b42ff21325995642 schema:name doi
117 schema:value 10.1007/s00382-012-1571-1
118 rdf:type schema:PropertyValue
119 N1db24b009b60425888abd06811eb8160 schema:issueNumber 12
120 rdf:type schema:PublicationIssue
121 N21516aa897764eb994bc9de13974bbd7 schema:name dimensions_id
122 schema:value pub.1012359911
123 rdf:type schema:PropertyValue
124 N239ba39c8efc4423a1a926a2b31f7350 schema:volumeNumber 39
125 rdf:type schema:PublicationVolume
126 N6bea83d7ed0645f8bdd6174703e98696 rdf:first sg:person.010673066557.41
127 rdf:rest N867182da32164402aae09ad75feac2b9
128 N6cb8147d2fba49fc872fa7f23d42ce4f rdf:first sg:person.014131530715.33
129 rdf:rest Nf7a11a683aa64e2dba5243380a4cb643
130 N7acb110ffa804ae18fe01ad204f0c1eb rdf:first sg:person.014703234061.47
131 rdf:rest N6cb8147d2fba49fc872fa7f23d42ce4f
132 N867182da32164402aae09ad75feac2b9 rdf:first sg:person.011206742225.33
133 rdf:rest Nb7f4aa80f7a944a780ea21c734c79447
134 N8755e44fba0c422cbc66d42710a2ff85 rdf:first sg:person.0776106250.41
135 rdf:rest N6bea83d7ed0645f8bdd6174703e98696
136 Nb22d834ac5134b23ab0b3a6bc2d85ab8 schema:name Springer Nature - SN SciGraph project
137 rdf:type schema:Organization
138 Nb7f4aa80f7a944a780ea21c734c79447 rdf:first sg:person.015010712155.05
139 rdf:rest rdf:nil
140 Nc98dc778c65048acae6349689e59de45 rdf:first sg:person.011066117233.90
141 rdf:rest N8755e44fba0c422cbc66d42710a2ff85
142 Nf7a11a683aa64e2dba5243380a4cb643 rdf:first sg:person.0744572121.58
143 rdf:rest Nc98dc778c65048acae6349689e59de45
144 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
145 schema:name Earth Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
148 schema:name Oceanography
149 rdf:type schema:DefinedTerm
150 sg:grant.12915243 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-012-1571-1
151 rdf:type schema:MonetaryGrant
152 sg:grant.2753871 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-012-1571-1
153 rdf:type schema:MonetaryGrant
154 sg:grant.7037241 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-012-1571-1
155 rdf:type schema:MonetaryGrant
156 sg:journal.1049631 schema:issn 0930-7575
157 1432-0894
158 schema:name Climate Dynamics
159 schema:publisher Springer Nature
160 rdf:type schema:Periodical
161 sg:person.010673066557.41 schema:affiliation grid-institutes:grid.17100.37
162 schema:familyName Webb
163 schema:givenName Mark J.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010673066557.41
165 rdf:type schema:Person
166 sg:person.011066117233.90 schema:affiliation grid-institutes:grid.17100.37
167 schema:familyName Lowe
168 schema:givenName Jason A.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066117233.90
170 rdf:type schema:Person
171 sg:person.011206742225.33 schema:affiliation grid-institutes:grid.17100.37
172 schema:familyName Ringer
173 schema:givenName Mark A.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011206742225.33
175 rdf:type schema:Person
176 sg:person.014131530715.33 schema:affiliation grid-institutes:grid.4991.5
177 schema:familyName Ingram
178 schema:givenName William
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014131530715.33
180 rdf:type schema:Person
181 sg:person.014703234061.47 schema:affiliation grid-institutes:grid.17100.37
182 schema:familyName Good
183 schema:givenName Peter
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014703234061.47
185 rdf:type schema:Person
186 sg:person.015010712155.05 schema:affiliation grid-institutes:grid.17100.37
187 schema:familyName Wu
188 schema:givenName Peili
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015010712155.05
190 rdf:type schema:Person
191 sg:person.0744572121.58 schema:affiliation grid-institutes:grid.8391.3
192 schema:familyName Lambert
193 schema:givenName F. Hugo
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744572121.58
195 rdf:type schema:Person
196 sg:person.0776106250.41 schema:affiliation grid-institutes:grid.9435.b
197 schema:familyName Gregory
198 schema:givenName Jonathan M.
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776106250.41
200 rdf:type schema:Person
201 sg:pub.10.1007/bf00210008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012875011
202 https://doi.org/10.1007/bf00210008
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/s00382-003-0365-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012281891
205 https://doi.org/10.1007/s00382-003-0365-x
206 rdf:type schema:CreativeWork
207 sg:pub.10.1007/s00382-008-0466-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048586312
208 https://doi.org/10.1007/s00382-008-0466-7
209 rdf:type schema:CreativeWork
210 sg:pub.10.1007/s003820000067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022442065
211 https://doi.org/10.1007/s003820000067
212 rdf:type schema:CreativeWork
213 sg:pub.10.1007/s003820050009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002170907
214 https://doi.org/10.1007/s003820050009
215 rdf:type schema:CreativeWork
216 sg:pub.10.1007/s003820050010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015242699
217 https://doi.org/10.1007/s003820050010
218 rdf:type schema:CreativeWork
219 sg:pub.10.1023/a:1026035305597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035832790
220 https://doi.org/10.1023/a:1026035305597
221 rdf:type schema:CreativeWork
222 sg:pub.10.1038/42924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007351501
223 https://doi.org/10.1038/42924
224 rdf:type schema:CreativeWork
225 sg:pub.10.1038/nature01092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046916950
226 https://doi.org/10.1038/nature01092
227 rdf:type schema:CreativeWork
228 grid-institutes:grid.17100.37 schema:alternateName Met Office Hadley Centre, Exeter, UK
229 schema:name Met Office Hadley Centre, Exeter, UK
230 rdf:type schema:Organization
231 grid-institutes:grid.4991.5 schema:alternateName Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, UK
232 schema:name Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, UK
233 Met Office Hadley Centre, Exeter, UK
234 rdf:type schema:Organization
235 grid-institutes:grid.8391.3 schema:alternateName College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
236 schema:name College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
237 rdf:type schema:Organization
238 grid-institutes:grid.9435.b schema:alternateName Department of Meteorology, Walker Institute for Climate System Research, University of Reading, Reading, UK
239 schema:name Department of Meteorology, Walker Institute for Climate System Research, University of Reading, Reading, UK
240 Met Office Hadley Centre, Exeter, UK
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...