Regional climate modelling over complex terrain: an evaluation study of COSMO-CLM hindcast model runs for the Greater Alpine Region View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-09-01

AUTHORS

Klaus Haslinger, Ivonne Anders, Michael Hofstätter

ABSTRACT

In this study the results of the regional climate model COSMO-CLM (CCLM) covering the Greater Alpine Region (GAR, 4°–19°W and 43°–49°N) were evaluated against observational data. The simulation was carried out as a hindcast run driven by ERA-40 reanalysis data for the period 1961–2000. The spatial resolution of the model data presented is approx. 10 km per grid point. For the evaluation purposes a variety of observational datasets were used: CRU TS 2.1, E-OBS, GPCC4 and HISTALP. Simple statistics such as mean biases, correlations, trends and annual cycles of temperature and precipitation for different sub-regions were applied to verify the model performance. Furthermore, the altitude dependence of these statistical measures has been taken into account. Compared to the CRU and E-OBS datasets CCLM shows an annual mean cold bias of −0.6 and −0.7 °C, respectively. Seasonal precipitation sums are generally overestimated by +8 to +23 % depending on the observational dataset with large variations in space and season. Bias and correlation show a dependency on altitude especially in the winter and summer seasons. Temperature trends in CCLM contradict the signals from observations, showing negative trends in summer and autumn which are in contrast to CRU and E-OBS. More... »

PAGES

511-529

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-012-1452-7

DOI

http://dx.doi.org/10.1007/s00382-012-1452-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017431292


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Climate Research Department, Zentralanstalt f\u00fcr Meteorologie und Geodynamik (ZAMG), Hohe Warte 38, 1190, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.423520.2", 
          "name": [
            "Climate Research Department, Zentralanstalt f\u00fcr Meteorologie und Geodynamik (ZAMG), Hohe Warte 38, 1190, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haslinger", 
        "givenName": "Klaus", 
        "id": "sg:person.013532331567.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013532331567.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climate Research Department, Zentralanstalt f\u00fcr Meteorologie und Geodynamik (ZAMG), Hohe Warte 38, 1190, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.423520.2", 
          "name": [
            "Climate Research Department, Zentralanstalt f\u00fcr Meteorologie und Geodynamik (ZAMG), Hohe Warte 38, 1190, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anders", 
        "givenName": "Ivonne", 
        "id": "sg:person.011226116541.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011226116541.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climate Research Department, Zentralanstalt f\u00fcr Meteorologie und Geodynamik (ZAMG), Hohe Warte 38, 1190, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.423520.2", 
          "name": [
            "Climate Research Department, Zentralanstalt f\u00fcr Meteorologie und Geodynamik (ZAMG), Hohe Warte 38, 1190, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hofst\u00e4tter", 
        "givenName": "Michael", 
        "id": "sg:person.012733042041.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733042041.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00382-010-0848-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018623467", 
          "https://doi.org/10.1007/s00382-010-0848-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-009-0683-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039959203", 
          "https://doi.org/10.1007/s00382-009-0683-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-006-9211-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014056389", 
          "https://doi.org/10.1007/s10584-006-9211-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-009-0698-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034188814", 
          "https://doi.org/10.1007/s00382-009-0698-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-008-0446-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051631698", 
          "https://doi.org/10.1007/s00382-008-0446-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01028112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053026387", 
          "https://doi.org/10.1007/bf01028112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-011-9883-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016340398", 
          "https://doi.org/10.1007/s11069-011-9883-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-006-9213-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047269817", 
          "https://doi.org/10.1007/s10584-006-9213-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-010-0780-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051625990", 
          "https://doi.org/10.1007/s00382-010-0780-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-935704-25-6_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041823177", 
          "https://doi.org/10.1007/978-1-935704-25-6_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-011-1019-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023502202", 
          "https://doi.org/10.1007/s00382-011-1019-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-09-01", 
    "datePublishedReg": "2012-09-01", 
    "description": "In this study the results of the regional climate model COSMO-CLM (CCLM) covering the Greater Alpine Region (GAR, 4\u00b0\u201319\u00b0W and 43\u00b0\u201349\u00b0N) were evaluated against observational data. The simulation was carried out as a hindcast run driven by ERA-40 reanalysis data for the period 1961\u20132000. The spatial resolution of the model data presented is approx. 10\u00a0km per grid point. For the evaluation purposes a variety of observational datasets were used: CRU TS 2.1, E-OBS, GPCC4 and HISTALP. Simple statistics such as mean biases, correlations, trends and annual cycles of temperature and precipitation for different sub-regions were applied to verify the model performance. Furthermore, the altitude dependence of these statistical measures has been taken into account. Compared to the CRU and E-OBS datasets CCLM shows an annual mean cold bias of \u22120.6 and \u22120.7\u00a0\u00b0C, respectively. Seasonal precipitation sums are generally overestimated by +8 to +23\u00a0% depending on the observational dataset with large variations in space and season. Bias and correlation show a dependency on altitude especially in the winter and summer seasons. Temperature trends in CCLM contradict the signals from observations, showing negative trends in summer and autumn which are in contrast to CRU and E-OBS.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-012-1452-7", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7580585", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "keywords": [
      "grid points", 
      "statistical measures", 
      "observational data", 
      "simple statistics", 
      "observational datasets", 
      "E-OBS", 
      "seasonal precipitation sums", 
      "climate model COSMO-CLM", 
      "Greater Alpine Region", 
      "model runs", 
      "complex terrain", 
      "model data", 
      "model performance", 
      "altitude dependence", 
      "mean cold bias", 
      "regional climate model COSMO-CLM", 
      "alpine regions", 
      "ERA-40 reanalysis data", 
      "statistics", 
      "spatial resolution", 
      "space", 
      "simulations", 
      "sum", 
      "dependence", 
      "cold bias", 
      "COSMO-CLM", 
      "reanalysis data", 
      "regional climate", 
      "precipitation sums", 
      "temperature trends", 
      "mean biases", 
      "annual cycle", 
      "negative trend", 
      "summer season", 
      "point", 
      "dataset", 
      "account", 
      "large variation", 
      "dependency", 
      "bias", 
      "signals", 
      "data", 
      "hindcasts", 
      "CRU", 
      "performance", 
      "season", 
      "observations", 
      "resolution", 
      "temperature", 
      "region", 
      "results", 
      "trends", 
      "run", 
      "terrain", 
      "correlation", 
      "precipitation", 
      "climate", 
      "winter", 
      "summer", 
      "variation", 
      "altitude", 
      "autumn", 
      "biases", 
      "variety", 
      "measures", 
      "cycle", 
      "study", 
      "contrast", 
      "evaluation", 
      "evaluation study", 
      "approx"
    ], 
    "name": "Regional climate modelling over complex terrain: an evaluation study of COSMO-CLM hindcast model runs for the Greater Alpine Region", 
    "pagination": "511-529", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017431292"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-012-1452-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-012-1452-7", 
      "https://app.dimensions.ai/details/publication/pub.1017431292"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_584.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-012-1452-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-012-1452-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-012-1452-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-012-1452-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-012-1452-7'


 

This table displays all metadata directly associated to this object as RDF triples.

188 TRIPLES      21 PREDICATES      106 URIs      87 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-012-1452-7 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author Nbb8f7e1bef4f4103a61f2d9d42eb7dbd
4 schema:citation sg:pub.10.1007/978-1-935704-25-6_2
5 sg:pub.10.1007/bf01028112
6 sg:pub.10.1007/s00382-008-0446-y
7 sg:pub.10.1007/s00382-009-0683-8
8 sg:pub.10.1007/s00382-009-0698-1
9 sg:pub.10.1007/s00382-010-0780-8
10 sg:pub.10.1007/s00382-010-0848-5
11 sg:pub.10.1007/s00382-011-1019-z
12 sg:pub.10.1007/s10584-006-9211-6
13 sg:pub.10.1007/s10584-006-9213-4
14 sg:pub.10.1007/s11069-011-9883-8
15 schema:datePublished 2012-09-01
16 schema:datePublishedReg 2012-09-01
17 schema:description In this study the results of the regional climate model COSMO-CLM (CCLM) covering the Greater Alpine Region (GAR, 4°–19°W and 43°–49°N) were evaluated against observational data. The simulation was carried out as a hindcast run driven by ERA-40 reanalysis data for the period 1961–2000. The spatial resolution of the model data presented is approx. 10 km per grid point. For the evaluation purposes a variety of observational datasets were used: CRU TS 2.1, E-OBS, GPCC4 and HISTALP. Simple statistics such as mean biases, correlations, trends and annual cycles of temperature and precipitation for different sub-regions were applied to verify the model performance. Furthermore, the altitude dependence of these statistical measures has been taken into account. Compared to the CRU and E-OBS datasets CCLM shows an annual mean cold bias of −0.6 and −0.7 °C, respectively. Seasonal precipitation sums are generally overestimated by +8 to +23 % depending on the observational dataset with large variations in space and season. Bias and correlation show a dependency on altitude especially in the winter and summer seasons. Temperature trends in CCLM contradict the signals from observations, showing negative trends in summer and autumn which are in contrast to CRU and E-OBS.
18 schema:genre article
19 schema:isAccessibleForFree false
20 schema:isPartOf N2c360b61842b437dbc47e4f474e0eb50
21 Nca78cb5a9da6437597111fde33ac7136
22 sg:journal.1049631
23 schema:keywords COSMO-CLM
24 CRU
25 E-OBS
26 ERA-40 reanalysis data
27 Greater Alpine Region
28 account
29 alpine regions
30 altitude
31 altitude dependence
32 annual cycle
33 approx
34 autumn
35 bias
36 biases
37 climate
38 climate model COSMO-CLM
39 cold bias
40 complex terrain
41 contrast
42 correlation
43 cycle
44 data
45 dataset
46 dependence
47 dependency
48 evaluation
49 evaluation study
50 grid points
51 hindcasts
52 large variation
53 mean biases
54 mean cold bias
55 measures
56 model data
57 model performance
58 model runs
59 negative trend
60 observational data
61 observational datasets
62 observations
63 performance
64 point
65 precipitation
66 precipitation sums
67 reanalysis data
68 region
69 regional climate
70 regional climate model COSMO-CLM
71 resolution
72 results
73 run
74 season
75 seasonal precipitation sums
76 signals
77 simple statistics
78 simulations
79 space
80 spatial resolution
81 statistical measures
82 statistics
83 study
84 sum
85 summer
86 summer season
87 temperature
88 temperature trends
89 terrain
90 trends
91 variation
92 variety
93 winter
94 schema:name Regional climate modelling over complex terrain: an evaluation study of COSMO-CLM hindcast model runs for the Greater Alpine Region
95 schema:pagination 511-529
96 schema:productId N210c4ba86b414b87a7743558018cf96c
97 Nfacc8426ef41435d85dd3c315a22a5f8
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017431292
99 https://doi.org/10.1007/s00382-012-1452-7
100 schema:sdDatePublished 2022-09-02T15:55
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher N940e4212bbc248a898405c014ad758a0
103 schema:url https://doi.org/10.1007/s00382-012-1452-7
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N210c4ba86b414b87a7743558018cf96c schema:name doi
108 schema:value 10.1007/s00382-012-1452-7
109 rdf:type schema:PropertyValue
110 N2c360b61842b437dbc47e4f474e0eb50 schema:issueNumber 1-2
111 rdf:type schema:PublicationIssue
112 N47086328f26e498e841d9acf6e7081ea rdf:first sg:person.011226116541.13
113 rdf:rest N5c1681fa620f4044ab0f2b558ee46de3
114 N5c1681fa620f4044ab0f2b558ee46de3 rdf:first sg:person.012733042041.88
115 rdf:rest rdf:nil
116 N940e4212bbc248a898405c014ad758a0 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 Nbb8f7e1bef4f4103a61f2d9d42eb7dbd rdf:first sg:person.013532331567.57
119 rdf:rest N47086328f26e498e841d9acf6e7081ea
120 Nca78cb5a9da6437597111fde33ac7136 schema:volumeNumber 40
121 rdf:type schema:PublicationVolume
122 Nfacc8426ef41435d85dd3c315a22a5f8 schema:name dimensions_id
123 schema:value pub.1017431292
124 rdf:type schema:PropertyValue
125 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
126 schema:name Earth Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
129 schema:name Atmospheric Sciences
130 rdf:type schema:DefinedTerm
131 sg:grant.7580585 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-012-1452-7
132 rdf:type schema:MonetaryGrant
133 sg:journal.1049631 schema:issn 0930-7575
134 1432-0894
135 schema:name Climate Dynamics
136 schema:publisher Springer Nature
137 rdf:type schema:Periodical
138 sg:person.011226116541.13 schema:affiliation grid-institutes:grid.423520.2
139 schema:familyName Anders
140 schema:givenName Ivonne
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011226116541.13
142 rdf:type schema:Person
143 sg:person.012733042041.88 schema:affiliation grid-institutes:grid.423520.2
144 schema:familyName Hofstätter
145 schema:givenName Michael
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012733042041.88
147 rdf:type schema:Person
148 sg:person.013532331567.57 schema:affiliation grid-institutes:grid.423520.2
149 schema:familyName Haslinger
150 schema:givenName Klaus
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013532331567.57
152 rdf:type schema:Person
153 sg:pub.10.1007/978-1-935704-25-6_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041823177
154 https://doi.org/10.1007/978-1-935704-25-6_2
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/bf01028112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053026387
157 https://doi.org/10.1007/bf01028112
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s00382-008-0446-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1051631698
160 https://doi.org/10.1007/s00382-008-0446-y
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s00382-009-0683-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039959203
163 https://doi.org/10.1007/s00382-009-0683-8
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s00382-009-0698-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034188814
166 https://doi.org/10.1007/s00382-009-0698-1
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s00382-010-0780-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051625990
169 https://doi.org/10.1007/s00382-010-0780-8
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s00382-010-0848-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018623467
172 https://doi.org/10.1007/s00382-010-0848-5
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s00382-011-1019-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1023502202
175 https://doi.org/10.1007/s00382-011-1019-z
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s10584-006-9211-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014056389
178 https://doi.org/10.1007/s10584-006-9211-6
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s10584-006-9213-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047269817
181 https://doi.org/10.1007/s10584-006-9213-4
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s11069-011-9883-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016340398
184 https://doi.org/10.1007/s11069-011-9883-8
185 rdf:type schema:CreativeWork
186 grid-institutes:grid.423520.2 schema:alternateName Climate Research Department, Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Hohe Warte 38, 1190, Vienna, Austria
187 schema:name Climate Research Department, Zentralanstalt für Meteorologie und Geodynamik (ZAMG), Hohe Warte 38, 1190, Vienna, Austria
188 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...