Abrupt CO2 experiments as tools for predicting and understanding CMIP5 representative concentration pathway projections View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-06-20

AUTHORS

Peter Good, Jonathan M. Gregory, Jason A. Lowe, Timothy Andrews

ABSTRACT

A fast simple climate modelling approach is developed for predicting and helping to understand general circulation model (GCM) simulations. We show that the simple model reproduces the GCM results accurately, for global mean surface air temperature change and global-mean heat uptake projections from 9 GCMs in the fifth coupled model inter-comparison project (CMIP5). This implies that understanding gained from idealised CO2 step experiments is applicable to policy-relevant scenario projections. Our approach is conceptually simple. It works by using the climate response to a CO2 step change taken directly from a GCM experiment. With radiative forcing from non-CO2 constituents obtained by adapting the Forster and Taylor method, we use our method to estimate results for CMIP5 representative concentration pathway (RCP) experiments for cases not run by the GCMs. We estimate differences between pairs of RCPs rather than RCP anomalies relative to the pre-industrial state. This gives better results because it makes greater use of available GCM projections. The GCMs exhibit differences in radiative forcing, which we incorporate in the simple model. We analyse the thus-completed ensemble of RCP projections. The ensemble mean changes between 1986–2005 and 2080–2099 for global temperature (heat uptake) are, for RCP8.5: 3.8 K (2.3 × 1024 J); for RCP6.0: 2.3 K (1.6 × 1024 J); for RCP4.5: 2.0 K (1.6 × 1024 J); for RCP2.6: 1.1 K (1.3 × 1024 J). The relative spread (standard deviation/ensemble mean) for these scenarios is around 0.2 and 0.15 for temperature and heat uptake respectively. We quantify the relative effect of mitigation action, through reduced emissions, via the time-dependent ratios (change in RCPx)/(change in RCP8.5), using changes with respect to pre-industrial conditions. We find that the effects of mitigation on global-mean temperature change and heat uptake are very similar across these different GCMs. More... »

PAGES

1041-1053

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-012-1410-4

DOI

http://dx.doi.org/10.1007/s00382-012-1410-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050447974


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Met Office Hadley Centre, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office Hadley Centre, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Good", 
        "givenName": "Peter", 
        "id": "sg:person.014703234061.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014703234061.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Meteorology, Walker Institute for Climate System Research, University of Reading, Reading, UK", 
          "id": "http://www.grid.ac/institutes/grid.9435.b", 
          "name": [
            "Met Office Hadley Centre, Exeter, UK", 
            "Department of Meteorology, Walker Institute for Climate System Research, University of Reading, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gregory", 
        "givenName": "Jonathan M.", 
        "id": "sg:person.0776106250.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776106250.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office Hadley Centre, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office Hadley Centre, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lowe", 
        "givenName": "Jason A.", 
        "id": "sg:person.011066117233.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066117233.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office Hadley Centre, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office Hadley Centre, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andrews", 
        "givenName": "Timothy", 
        "id": "sg:person.016440513017.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016440513017.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00382-012-1287-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048486891", 
          "https://doi.org/10.1007/s00382-012-1287-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00007931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017112900", 
          "https://doi.org/10.1007/pl00007931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820000090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021453074", 
          "https://doi.org/10.1007/s003820000090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820000067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022442065", 
          "https://doi.org/10.1007/s003820000067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-011-0156-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045851916", 
          "https://doi.org/10.1007/s10584-011-0156-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-06-20", 
    "datePublishedReg": "2012-06-20", 
    "description": "A fast simple climate modelling approach is developed for predicting and helping to understand general circulation model (GCM) simulations. We show that the simple model reproduces the GCM results accurately, for global mean surface air temperature change and global-mean heat uptake projections from 9 GCMs in the fifth coupled model inter-comparison project (CMIP5). This implies that understanding gained from idealised CO2 step experiments is applicable to policy-relevant scenario projections. Our approach is conceptually simple. It works by using the climate response to a CO2 step change taken directly from a GCM experiment. With radiative forcing from non-CO2 constituents obtained by adapting the Forster and Taylor method, we use our method to estimate results for CMIP5 representative concentration pathway (RCP) experiments for cases not run by the GCMs. We estimate differences between pairs of RCPs rather than RCP anomalies relative to the pre-industrial state. This gives better results because it makes greater use of available GCM projections. The GCMs exhibit differences in radiative forcing, which we incorporate in the simple model. We analyse the thus-completed ensemble of RCP projections. The ensemble mean changes between 1986\u20132005 and 2080\u20132099 for global temperature (heat uptake) are, for RCP8.5: 3.8\u00a0K (2.3\u00a0\u00d7\u00a01024\u00a0J); for RCP6.0: 2.3\u00a0K (1.6\u00a0\u00d7\u00a01024\u00a0J); for RCP4.5: 2.0\u00a0K (1.6\u00a0\u00d7\u00a01024\u00a0J); for RCP2.6: 1.1\u00a0K (1.3\u00a0\u00d7\u00a01024\u00a0J). The relative spread (standard deviation/ensemble mean) for these scenarios is around 0.2 and 0.15 for temperature and heat uptake respectively. We quantify the relative effect of mitigation action, through reduced emissions, via the time-dependent ratios (change in RCPx)/(change in RCP8.5), using changes with respect to pre-industrial conditions. We find that the effects of mitigation on global-mean temperature change and heat uptake are very similar across these different GCMs.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-012-1410-4", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7037241", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.12915243", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "keywords": [
      "heat uptake", 
      "radiative forcing", 
      "global mean surface air temperature change", 
      "general circulation model simulations", 
      "surface air temperature change", 
      "Model Inter-comparison Project", 
      "representative concentration pathway (RCP) experiments", 
      "global mean temperature change", 
      "Representative Concentration Pathway (RCP) projections", 
      "circulation model simulations", 
      "pre-industrial conditions", 
      "pre-industrial state", 
      "air temperature changes", 
      "temperature changes", 
      "GCM results", 
      "GCM experiments", 
      "GCM projections", 
      "different GCMs", 
      "climate response", 
      "RCP projections", 
      "CO2 experiments", 
      "model simulations", 
      "scenario projections", 
      "global temperature", 
      "effects of mitigation", 
      "GCM", 
      "pathway experiments", 
      "forcing", 
      "time-dependent ratio", 
      "simple model", 
      "mitigation actions", 
      "modelling approach", 
      "projections", 
      "RCP8.5", 
      "RCP4.5", 
      "RCP2.6", 
      "RCP6.0", 
      "reduced emissions", 
      "rCPS", 
      "anomalies", 
      "changes", 
      "step change", 
      "ensemble", 
      "temperature", 
      "relative effects", 
      "exhibit differences", 
      "Taylor method", 
      "mitigation", 
      "model", 
      "scenarios", 
      "emission", 
      "heat", 
      "constituents", 
      "simulations", 
      "experiments", 
      "ratio", 
      "results", 
      "conditions", 
      "relative spread", 
      "understanding", 
      "uptake", 
      "project", 
      "differences", 
      "step experiments", 
      "respect", 
      "spread", 
      "better results", 
      "response", 
      "effect", 
      "approach", 
      "tool", 
      "state", 
      "method", 
      "greater use", 
      "use", 
      "cases", 
      "Forster", 
      "pairs", 
      "action"
    ], 
    "name": "Abrupt CO2 experiments as tools for predicting and understanding CMIP5 representative concentration pathway projections", 
    "pagination": "1041-1053", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050447974"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-012-1410-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-012-1410-4", 
      "https://app.dimensions.ai/details/publication/pub.1050447974"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_560.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-012-1410-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-012-1410-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-012-1410-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-012-1410-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-012-1410-4'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      110 URIs      95 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-012-1410-4 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0405
4 anzsrc-for:0406
5 schema:author N363bbea42e4243269adeb66d138bdde4
6 schema:citation sg:pub.10.1007/pl00007931
7 sg:pub.10.1007/s00382-012-1287-2
8 sg:pub.10.1007/s003820000067
9 sg:pub.10.1007/s003820000090
10 sg:pub.10.1007/s10584-011-0156-z
11 schema:datePublished 2012-06-20
12 schema:datePublishedReg 2012-06-20
13 schema:description A fast simple climate modelling approach is developed for predicting and helping to understand general circulation model (GCM) simulations. We show that the simple model reproduces the GCM results accurately, for global mean surface air temperature change and global-mean heat uptake projections from 9 GCMs in the fifth coupled model inter-comparison project (CMIP5). This implies that understanding gained from idealised CO2 step experiments is applicable to policy-relevant scenario projections. Our approach is conceptually simple. It works by using the climate response to a CO2 step change taken directly from a GCM experiment. With radiative forcing from non-CO2 constituents obtained by adapting the Forster and Taylor method, we use our method to estimate results for CMIP5 representative concentration pathway (RCP) experiments for cases not run by the GCMs. We estimate differences between pairs of RCPs rather than RCP anomalies relative to the pre-industrial state. This gives better results because it makes greater use of available GCM projections. The GCMs exhibit differences in radiative forcing, which we incorporate in the simple model. We analyse the thus-completed ensemble of RCP projections. The ensemble mean changes between 1986–2005 and 2080–2099 for global temperature (heat uptake) are, for RCP8.5: 3.8 K (2.3 × 1024 J); for RCP6.0: 2.3 K (1.6 × 1024 J); for RCP4.5: 2.0 K (1.6 × 1024 J); for RCP2.6: 1.1 K (1.3 × 1024 J). The relative spread (standard deviation/ensemble mean) for these scenarios is around 0.2 and 0.15 for temperature and heat uptake respectively. We quantify the relative effect of mitigation action, through reduced emissions, via the time-dependent ratios (change in RCPx)/(change in RCP8.5), using changes with respect to pre-industrial conditions. We find that the effects of mitigation on global-mean temperature change and heat uptake are very similar across these different GCMs.
14 schema:genre article
15 schema:isAccessibleForFree false
16 schema:isPartOf N0cee795a7f55411991c4c59de936d707
17 N52a66324ec8147d8be7d26ef93404c91
18 sg:journal.1049631
19 schema:keywords CO2 experiments
20 Forster
21 GCM
22 GCM experiments
23 GCM projections
24 GCM results
25 Model Inter-comparison Project
26 RCP projections
27 RCP2.6
28 RCP4.5
29 RCP6.0
30 RCP8.5
31 Representative Concentration Pathway (RCP) projections
32 Taylor method
33 action
34 air temperature changes
35 anomalies
36 approach
37 better results
38 cases
39 changes
40 circulation model simulations
41 climate response
42 conditions
43 constituents
44 differences
45 different GCMs
46 effect
47 effects of mitigation
48 emission
49 ensemble
50 exhibit differences
51 experiments
52 forcing
53 general circulation model simulations
54 global mean surface air temperature change
55 global mean temperature change
56 global temperature
57 greater use
58 heat
59 heat uptake
60 method
61 mitigation
62 mitigation actions
63 model
64 model simulations
65 modelling approach
66 pairs
67 pathway experiments
68 pre-industrial conditions
69 pre-industrial state
70 project
71 projections
72 rCPS
73 radiative forcing
74 ratio
75 reduced emissions
76 relative effects
77 relative spread
78 representative concentration pathway (RCP) experiments
79 respect
80 response
81 results
82 scenario projections
83 scenarios
84 simple model
85 simulations
86 spread
87 state
88 step change
89 step experiments
90 surface air temperature change
91 temperature
92 temperature changes
93 time-dependent ratio
94 tool
95 understanding
96 uptake
97 use
98 schema:name Abrupt CO2 experiments as tools for predicting and understanding CMIP5 representative concentration pathway projections
99 schema:pagination 1041-1053
100 schema:productId Nd4d3fc369b4f4af19a0b69d25026b111
101 Nf0b6e4720e18424eb264d662d83ac6dd
102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050447974
103 https://doi.org/10.1007/s00382-012-1410-4
104 schema:sdDatePublished 2022-10-01T06:37
105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
106 schema:sdPublisher N1086b0af516349f9949c0fd42b8261e1
107 schema:url https://doi.org/10.1007/s00382-012-1410-4
108 sgo:license sg:explorer/license/
109 sgo:sdDataset articles
110 rdf:type schema:ScholarlyArticle
111 N0cee795a7f55411991c4c59de936d707 schema:issueNumber 3-4
112 rdf:type schema:PublicationIssue
113 N1086b0af516349f9949c0fd42b8261e1 schema:name Springer Nature - SN SciGraph project
114 rdf:type schema:Organization
115 N363bbea42e4243269adeb66d138bdde4 rdf:first sg:person.014703234061.47
116 rdf:rest N3a1ddfe2fcf4462c8c6ac5ed6a3dbfe1
117 N3a1ddfe2fcf4462c8c6ac5ed6a3dbfe1 rdf:first sg:person.0776106250.41
118 rdf:rest N5b101d3e93bb4270b05b376539ebd51f
119 N52a66324ec8147d8be7d26ef93404c91 schema:volumeNumber 40
120 rdf:type schema:PublicationVolume
121 N5b101d3e93bb4270b05b376539ebd51f rdf:first sg:person.011066117233.90
122 rdf:rest Naff45997913542558e1fd7156df0516b
123 Naff45997913542558e1fd7156df0516b rdf:first sg:person.016440513017.22
124 rdf:rest rdf:nil
125 Nd4d3fc369b4f4af19a0b69d25026b111 schema:name doi
126 schema:value 10.1007/s00382-012-1410-4
127 rdf:type schema:PropertyValue
128 Nf0b6e4720e18424eb264d662d83ac6dd schema:name dimensions_id
129 schema:value pub.1050447974
130 rdf:type schema:PropertyValue
131 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
132 schema:name Earth Sciences
133 rdf:type schema:DefinedTerm
134 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
135 schema:name Atmospheric Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
138 schema:name Oceanography
139 rdf:type schema:DefinedTerm
140 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
141 schema:name Physical Geography and Environmental Geoscience
142 rdf:type schema:DefinedTerm
143 sg:grant.12915243 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-012-1410-4
144 rdf:type schema:MonetaryGrant
145 sg:grant.7037241 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-012-1410-4
146 rdf:type schema:MonetaryGrant
147 sg:journal.1049631 schema:issn 0930-7575
148 1432-0894
149 schema:name Climate Dynamics
150 schema:publisher Springer Nature
151 rdf:type schema:Periodical
152 sg:person.011066117233.90 schema:affiliation grid-institutes:grid.17100.37
153 schema:familyName Lowe
154 schema:givenName Jason A.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011066117233.90
156 rdf:type schema:Person
157 sg:person.014703234061.47 schema:affiliation grid-institutes:grid.17100.37
158 schema:familyName Good
159 schema:givenName Peter
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014703234061.47
161 rdf:type schema:Person
162 sg:person.016440513017.22 schema:affiliation grid-institutes:grid.17100.37
163 schema:familyName Andrews
164 schema:givenName Timothy
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016440513017.22
166 rdf:type schema:Person
167 sg:person.0776106250.41 schema:affiliation grid-institutes:grid.9435.b
168 schema:familyName Gregory
169 schema:givenName Jonathan M.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776106250.41
171 rdf:type schema:Person
172 sg:pub.10.1007/pl00007931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017112900
173 https://doi.org/10.1007/pl00007931
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s00382-012-1287-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048486891
176 https://doi.org/10.1007/s00382-012-1287-2
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s003820000067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022442065
179 https://doi.org/10.1007/s003820000067
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s003820000090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021453074
182 https://doi.org/10.1007/s003820000090
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s10584-011-0156-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1045851916
185 https://doi.org/10.1007/s10584-011-0156-z
186 rdf:type schema:CreativeWork
187 grid-institutes:grid.17100.37 schema:alternateName Met Office Hadley Centre, Exeter, UK
188 schema:name Met Office Hadley Centre, Exeter, UK
189 rdf:type schema:Organization
190 grid-institutes:grid.9435.b schema:alternateName Department of Meteorology, Walker Institute for Climate System Research, University of Reading, Reading, UK
191 schema:name Department of Meteorology, Walker Institute for Climate System Research, University of Reading, Reading, UK
192 Met Office Hadley Centre, Exeter, UK
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...