Estimation of persistence and trends in geostrophic wind speed for the assessment of wind energy yields in Northwest Europe View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-11-25

AUTHORS

Alexander M. R. Bakker, Bart J. J. M. van den Hurk

ABSTRACT

Wind climate in Northwest Europe is subject to long-term persistence (LTP), also called the Hurst phenomenon. Ignorance of LTP causes underestimation of climatic variability. The quantification of multi-year variability is important for the assessment of the uncertainty of future multi-year wind yields. Estimating LTP requires long homogeneous time series. Such series of wind observations are rare, but annual mean geostrophic wind speed (U) can be used instead. This study demonstrates a method to estimate the 10-year aggregated mean U for the near and the far future and its uncertainty in Northwest Europe. Time series of U were derived from daily sea level pressure from the European Climate Assessment Dataset. Minor inhomogeneities cannot be ruled out, but were shown to hardly affect the estimated Hurst exponent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\hat{H})$$\end{document}. A maximum likelihood method was adjusted to remove the biases in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{H}$$\end{document}. The geostrophic wind speed over the North Sea, the British Isles and along the Scandinavian coast are characterised by statistically significant H between 0.58 and 0.74, (H = 0.5 implies no LTP). The additional affect of the parameter uncertainty is estimated in a Bayesian way and is highly dependent on the record length. The assessment of structural changes in future wind fields requires general circulation models. An ensemble of seventeen simulations (ESSENCE) with one single climate model (ECHAM5/MPI-OM) was used to evaluate structural trends and LTP. The estimated \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{H}$$\end{document} in the ESSENCE simulations are generally close to 0.5 and not significant. Significant trends in U are found over large parts of the investigated domain, but the trends are small compared to the multi-year variability. Large decreasing trends are found in the vicinity of Iceland and increasing trends near the Greenland coast. This is likely related to the sea ice retreat within the ESSENCE simulations and the associated change in surface temperature gradients. More... »

PAGES

767-782

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-011-1248-1

DOI

http://dx.doi.org/10.1007/s00382-011-1248-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037590407


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "KNMI, PO Box 201, 3730 AE, De Bilt, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "KNMI, PO Box 201, 3730 AE, De Bilt, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bakker", 
        "givenName": "Alexander M. R.", 
        "id": "sg:person.015242103473.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015242103473.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "KNMI, PO Box 201, 3730 AE, De Bilt, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "KNMI, PO Box 201, 3730 AE, De Bilt, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van den Hurk", 
        "givenName": "Bart J. J. M.", 
        "id": "sg:person.010707714545.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707714545.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s003820050239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023783619", 
          "https://doi.org/10.1007/s003820050239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03167-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042385705", 
          "https://doi.org/10.1007/978-3-662-03167-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-007-0333-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013595122", 
          "https://doi.org/10.1007/s00382-007-0333-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo979", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053357153", 
          "https://doi.org/10.1038/ngeo979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00477-010-0408-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025134103", 
          "https://doi.org/10.1007/s00477-010-0408-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-006-9227-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044513916", 
          "https://doi.org/10.1007/s10584-006-9227-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-008-0440-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029552700", 
          "https://doi.org/10.1007/s00382-008-0440-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-005-0072-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047304953", 
          "https://doi.org/10.1007/s00382-005-0072-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-008-0504-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034521023", 
          "https://doi.org/10.1007/s00382-008-0504-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10236-005-0024-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019133506", 
          "https://doi.org/10.1007/s10236-005-0024-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-11-25", 
    "datePublishedReg": "2011-11-25", 
    "description": "Wind climate in Northwest Europe is subject to long-term persistence (LTP), also called the Hurst phenomenon. Ignorance of LTP causes underestimation of climatic variability. The quantification of multi-year variability is important for the assessment of the uncertainty of future multi-year wind yields. Estimating LTP requires long homogeneous time series. Such series of wind observations are rare, but annual mean geostrophic wind speed (U) can be used instead. This study demonstrates a method to estimate the 10-year aggregated mean U for the near and the far future and its uncertainty in Northwest Europe. Time series of U were derived from daily sea level pressure from the European Climate Assessment Dataset. Minor inhomogeneities cannot be ruled out, but were shown to hardly affect the estimated Hurst exponent \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$(\\hat{H})$$\\end{document}. A maximum likelihood method was adjusted to remove the biases in \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hat{H}$$\\end{document}. The geostrophic wind speed over the North Sea, the British Isles and along the Scandinavian coast are characterised by statistically significant H between 0.58 and 0.74, (H\u00a0=\u00a00.5 implies no LTP). The additional affect of the parameter uncertainty is estimated in a Bayesian way and is highly dependent on the record length. The assessment of structural changes in future wind fields requires general circulation models. An ensemble of seventeen simulations (ESSENCE) with one single climate model (ECHAM5/MPI-OM) was used to evaluate structural trends and LTP. The estimated \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\hat{H}$$\\end{document} in the ESSENCE simulations are generally close to 0.5 and not significant. Significant trends in U are found over large parts of the investigated domain, but the trends are small compared to the multi-year variability. Large decreasing trends are found in the vicinity of Iceland and increasing trends near the Greenland coast. This is likely related to the sea ice retreat within the ESSENCE simulations and the associated change in surface temperature gradients.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-011-1248-1", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "keywords": [
      "geostrophic wind speed", 
      "multi-year variability", 
      "northwest Europe", 
      "wind speed", 
      "daily sea level pressure", 
      "European Climate Assessment dataset", 
      "single climate model", 
      "sea ice retreat", 
      "sea level pressure", 
      "future wind fields", 
      "general circulation model", 
      "vicinity of Iceland", 
      "surface temperature gradient", 
      "time series", 
      "homogeneous time series", 
      "level pressure", 
      "climate models", 
      "ice retreat", 
      "circulation model", 
      "Greenland coast", 
      "climatic variability", 
      "structural trends", 
      "Scandinavian coast", 
      "wind field", 
      "wind observations", 
      "North Sea", 
      "wind climate", 
      "record length", 
      "minor inhomogeneity", 
      "Hurst phenomenon", 
      "long-term persistence", 
      "far future", 
      "British Isles", 
      "significant trend", 
      "variability", 
      "coast", 
      "temperature gradient", 
      "large part", 
      "wind energy yield", 
      "assessment dataset", 
      "additional affect", 
      "trends", 
      "uncertainty", 
      "retreat", 
      "Sea", 
      "climate", 
      "Iceland", 
      "Europe", 
      "Hurst exponent", 
      "Isles", 
      "parameter uncertainties", 
      "underestimation", 
      "biases", 
      "ensemble", 
      "vicinity", 
      "simulations", 
      "gradient", 
      "series", 
      "changes", 
      "persistence", 
      "speed", 
      "model", 
      "assessment", 
      "part", 
      "dataset", 
      "such series", 
      "inhomogeneity", 
      "maximum likelihood method", 
      "estimation", 
      "quantification", 
      "future", 
      "field", 
      "likelihood method", 
      "energy yield", 
      "pressure", 
      "phenomenon", 
      "exponent", 
      "yield", 
      "study", 
      "domain", 
      "method", 
      "length", 
      "way", 
      "Bayesian way", 
      "structural changes", 
      "affect", 
      "ignorance", 
      "observations", 
      "wind yields", 
      "estimation of persistence"
    ], 
    "name": "Estimation of persistence and trends in geostrophic wind speed for the assessment of wind energy yields in Northwest Europe", 
    "pagination": "767-782", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037590407"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-011-1248-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-011-1248-1", 
      "https://app.dimensions.ai/details/publication/pub.1037590407"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_540.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-011-1248-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-011-1248-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-011-1248-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-011-1248-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-011-1248-1'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      21 PREDICATES      124 URIs      106 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-011-1248-1 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author Neabdd571625d4f64829a2f95a55fa270
4 schema:citation sg:pub.10.1007/978-3-662-03167-4
5 sg:pub.10.1007/s00382-005-0072-x
6 sg:pub.10.1007/s00382-007-0333-y
7 sg:pub.10.1007/s00382-008-0440-4
8 sg:pub.10.1007/s00382-008-0504-5
9 sg:pub.10.1007/s003820050239
10 sg:pub.10.1007/s00477-010-0408-x
11 sg:pub.10.1007/s10236-005-0024-3
12 sg:pub.10.1007/s10584-006-9227-y
13 sg:pub.10.1038/ngeo979
14 schema:datePublished 2011-11-25
15 schema:datePublishedReg 2011-11-25
16 schema:description Wind climate in Northwest Europe is subject to long-term persistence (LTP), also called the Hurst phenomenon. Ignorance of LTP causes underestimation of climatic variability. The quantification of multi-year variability is important for the assessment of the uncertainty of future multi-year wind yields. Estimating LTP requires long homogeneous time series. Such series of wind observations are rare, but annual mean geostrophic wind speed (U) can be used instead. This study demonstrates a method to estimate the 10-year aggregated mean U for the near and the far future and its uncertainty in Northwest Europe. Time series of U were derived from daily sea level pressure from the European Climate Assessment Dataset. Minor inhomogeneities cannot be ruled out, but were shown to hardly affect the estimated Hurst exponent \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\hat{H})$$\end{document}. A maximum likelihood method was adjusted to remove the biases in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{H}$$\end{document}. The geostrophic wind speed over the North Sea, the British Isles and along the Scandinavian coast are characterised by statistically significant H between 0.58 and 0.74, (H = 0.5 implies no LTP). The additional affect of the parameter uncertainty is estimated in a Bayesian way and is highly dependent on the record length. The assessment of structural changes in future wind fields requires general circulation models. An ensemble of seventeen simulations (ESSENCE) with one single climate model (ECHAM5/MPI-OM) was used to evaluate structural trends and LTP. The estimated \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{H}$$\end{document} in the ESSENCE simulations are generally close to 0.5 and not significant. Significant trends in U are found over large parts of the investigated domain, but the trends are small compared to the multi-year variability. Large decreasing trends are found in the vicinity of Iceland and increasing trends near the Greenland coast. This is likely related to the sea ice retreat within the ESSENCE simulations and the associated change in surface temperature gradients.
17 schema:genre article
18 schema:isAccessibleForFree true
19 schema:isPartOf N3facb6752b88495fa51a9a06ae0fbcc4
20 N5325f780624645cbabf1bea8895d3608
21 sg:journal.1049631
22 schema:keywords Bayesian way
23 British Isles
24 Europe
25 European Climate Assessment dataset
26 Greenland coast
27 Hurst exponent
28 Hurst phenomenon
29 Iceland
30 Isles
31 North Sea
32 Scandinavian coast
33 Sea
34 additional affect
35 affect
36 assessment
37 assessment dataset
38 biases
39 changes
40 circulation model
41 climate
42 climate models
43 climatic variability
44 coast
45 daily sea level pressure
46 dataset
47 domain
48 energy yield
49 ensemble
50 estimation
51 estimation of persistence
52 exponent
53 far future
54 field
55 future
56 future wind fields
57 general circulation model
58 geostrophic wind speed
59 gradient
60 homogeneous time series
61 ice retreat
62 ignorance
63 inhomogeneity
64 large part
65 length
66 level pressure
67 likelihood method
68 long-term persistence
69 maximum likelihood method
70 method
71 minor inhomogeneity
72 model
73 multi-year variability
74 northwest Europe
75 observations
76 parameter uncertainties
77 part
78 persistence
79 phenomenon
80 pressure
81 quantification
82 record length
83 retreat
84 sea ice retreat
85 sea level pressure
86 series
87 significant trend
88 simulations
89 single climate model
90 speed
91 structural changes
92 structural trends
93 study
94 such series
95 surface temperature gradient
96 temperature gradient
97 time series
98 trends
99 uncertainty
100 underestimation
101 variability
102 vicinity
103 vicinity of Iceland
104 way
105 wind climate
106 wind energy yield
107 wind field
108 wind observations
109 wind speed
110 wind yields
111 yield
112 schema:name Estimation of persistence and trends in geostrophic wind speed for the assessment of wind energy yields in Northwest Europe
113 schema:pagination 767-782
114 schema:productId N0d7dcea8b01d4ea09eb8fe757cc6f084
115 Nf56b0d24b2dc432cae7f6039af1c7ea5
116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037590407
117 https://doi.org/10.1007/s00382-011-1248-1
118 schema:sdDatePublished 2022-11-24T20:54
119 schema:sdLicense https://scigraph.springernature.com/explorer/license/
120 schema:sdPublisher N9f6343b4340f43f7b11b011d5f250de8
121 schema:url https://doi.org/10.1007/s00382-011-1248-1
122 sgo:license sg:explorer/license/
123 sgo:sdDataset articles
124 rdf:type schema:ScholarlyArticle
125 N0d7dcea8b01d4ea09eb8fe757cc6f084 schema:name dimensions_id
126 schema:value pub.1037590407
127 rdf:type schema:PropertyValue
128 N3e477287e2c24059857ed5b998c2c1e5 rdf:first sg:person.010707714545.84
129 rdf:rest rdf:nil
130 N3facb6752b88495fa51a9a06ae0fbcc4 schema:issueNumber 3-4
131 rdf:type schema:PublicationIssue
132 N5325f780624645cbabf1bea8895d3608 schema:volumeNumber 39
133 rdf:type schema:PublicationVolume
134 N9f6343b4340f43f7b11b011d5f250de8 schema:name Springer Nature - SN SciGraph project
135 rdf:type schema:Organization
136 Neabdd571625d4f64829a2f95a55fa270 rdf:first sg:person.015242103473.22
137 rdf:rest N3e477287e2c24059857ed5b998c2c1e5
138 Nf56b0d24b2dc432cae7f6039af1c7ea5 schema:name doi
139 schema:value 10.1007/s00382-011-1248-1
140 rdf:type schema:PropertyValue
141 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
142 schema:name Earth Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
145 schema:name Physical Geography and Environmental Geoscience
146 rdf:type schema:DefinedTerm
147 sg:journal.1049631 schema:issn 0930-7575
148 1432-0894
149 schema:name Climate Dynamics
150 schema:publisher Springer Nature
151 rdf:type schema:Periodical
152 sg:person.010707714545.84 schema:affiliation grid-institutes:grid.8653.8
153 schema:familyName van den Hurk
154 schema:givenName Bart J. J. M.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707714545.84
156 rdf:type schema:Person
157 sg:person.015242103473.22 schema:affiliation grid-institutes:grid.8653.8
158 schema:familyName Bakker
159 schema:givenName Alexander M. R.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015242103473.22
161 rdf:type schema:Person
162 sg:pub.10.1007/978-3-662-03167-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042385705
163 https://doi.org/10.1007/978-3-662-03167-4
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s00382-005-0072-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047304953
166 https://doi.org/10.1007/s00382-005-0072-x
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s00382-007-0333-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1013595122
169 https://doi.org/10.1007/s00382-007-0333-y
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s00382-008-0440-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029552700
172 https://doi.org/10.1007/s00382-008-0440-4
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s00382-008-0504-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034521023
175 https://doi.org/10.1007/s00382-008-0504-5
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s003820050239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023783619
178 https://doi.org/10.1007/s003820050239
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s00477-010-0408-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025134103
181 https://doi.org/10.1007/s00477-010-0408-x
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s10236-005-0024-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019133506
184 https://doi.org/10.1007/s10236-005-0024-3
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s10584-006-9227-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1044513916
187 https://doi.org/10.1007/s10584-006-9227-y
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/ngeo979 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053357153
190 https://doi.org/10.1038/ngeo979
191 rdf:type schema:CreativeWork
192 grid-institutes:grid.8653.8 schema:alternateName KNMI, PO Box 201, 3730 AE, De Bilt, The Netherlands
193 schema:name KNMI, PO Box 201, 3730 AE, De Bilt, The Netherlands
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...