The contribution of anthropogenic forcings to regional changes in temperature during the last decade View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-09-17

AUTHORS

Nikolaos Christidis, Peter A. Stott, Francis W. Zwiers, Hideo Shiogama, Toru Nozawa

ABSTRACT

Regional distributions of the mean annual temperature in the 2000s are computed with and without the effect of anthropogenic influences on the climate in several sub-continental regions. Simulated global patterns of the temperature response to external forcings are regressed against observations using optimal fingerprinting. The global analysis provides constraints which are then used to construct the regional temperature distributions. A similar approach was also employed in previous work, but here the methodology is extended to examine changes in any region, including areas with a poor observational coverage that were omitted in the earlier study. Two different General Circulation Models (GCMs) are used in the analysis. Anthropogenic forcings are found to have at least quadrupled the likelihood of occurrence of a year warmer than the warmest year since 1900 in 23 out of the 24 regions. The temperature distributions computed with the two models are very similar. While a more detailed assessment of model dependencies remains to be made once additional suitable GCM simulations become available, the present study introduces the statistical methodology and demonstrates its first application. The derived information concerning the effect of human influences on the regional climate is useful for adaptation planning. Moreover, by pre-computing the change in the likelihood of exceeding a temperature threshold over a range of thresholds, this kind of analysis enables a near real-time assessment of the anthropogenic impact on the observed regional temperatures. More... »

PAGES

1259-1274

References to SciGraph publications

  • 1999-06. Causes of twentieth-century temperature change near the Earth's surface in NATURE
  • 2000-02. Uncertainties in regional climate change prediction: a regional analysis of ensemble simulations with the HADCM2 coupled AOGCM in CLIMATE DYNAMICS
  • 1999-06. Checking for model consistency in optimal fingerprinting in CLIMATE DYNAMICS
  • 2003-02-18. Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios in CLIMATE DYNAMICS
  • 2009-06-28. Probabilistic estimates of recent changes in temperature: a multi-scale attribution analysis in CLIMATE DYNAMICS
  • 2005-08. The End-to-End Attribution Problem: From Emissions to Impacts in CLIMATIC CHANGE
  • 2003-02. Liability for climate change in NATURE
  • 1997-09. Multi-fingerprint detection and attribution analysis of greenhouse gas, greenhouse gas-plus-aerosol and solar forced climate change in CLIMATE DYNAMICS
  • 2007-07-23. Detection of human influence on twentieth-century precipitation trends in NATURE
  • 2008-10-30. Attribution of polar warming to human influence in NATURE GEOSCIENCE
  • 2002-01. Effects of Land Cover Conversion on Surface Climate in CLIMATIC CHANGE
  • 2004-12. Human contribution to the European heatwave of 2003 in NATURE
  • 2003-07. Climatic Change in Mountain Regions: A Review of Possible Impacts in CLIMATIC CHANGE
  • 2010-01-14. Causes for the recent changes in cold- and heat-related mortality in England and Wales in CLIMATIC CHANGE
  • 2007-08. Warming trends in Asia amplified by brown cloud solar absorption in NATURE
  • 2011-02-16. Human contribution to more-intense precipitation extremes in NATURE
  • 2003-08-29. Estimating signal amplitudes in optimal fingerprinting, part I: theory in CLIMATE DYNAMICS
  • 2000-01. Modelled and observed variability in atmospheric vertical temperature structure in CLIMATE DYNAMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00382-011-1184-0

    DOI

    http://dx.doi.org/10.1007/s00382-011-1184-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1005068583


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Oceanography", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Christidis", 
            "givenName": "Nikolaos", 
            "id": "sg:person.01100172067.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100172067.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stott", 
            "givenName": "Peter A.", 
            "id": "sg:person.015667030077.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667030077.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Pacific Climate Impacts Consortium, University House 1, University of Victoria, PO Box 3060 Sta CSC, V8W 3R4, Victoria, BC, Canada", 
              "id": "http://www.grid.ac/institutes/grid.143640.4", 
              "name": [
                "Pacific Climate Impacts Consortium, University House 1, University of Victoria, PO Box 3060 Sta CSC, V8W 3R4, Victoria, BC, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zwiers", 
            "givenName": "Francis W.", 
            "id": "sg:person.0603650500.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603650500.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute for Environmental Studies, 305-8506, Tsukuba, Ibaraki, Japan", 
              "id": "http://www.grid.ac/institutes/grid.140139.e", 
              "name": [
                "National Institute for Environmental Studies, 305-8506, Tsukuba, Ibaraki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shiogama", 
            "givenName": "Hideo", 
            "id": "sg:person.011356656533.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356656533.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute for Environmental Studies, 305-8506, Tsukuba, Ibaraki, Japan", 
              "id": "http://www.grid.ac/institutes/grid.140139.e", 
              "name": [
                "National Institute for Environmental Studies, 305-8506, Tsukuba, Ibaraki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nozawa", 
            "givenName": "Toru", 
            "id": "sg:person.011033746441.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011033746441.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/pl00013733", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049849175", 
              "https://doi.org/10.1007/pl00013733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-005-6778-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037417665", 
              "https://doi.org/10.1007/s10584-005-6778-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052240973", 
              "https://doi.org/10.1038/nature06019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-009-9774-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029044917", 
              "https://doi.org/10.1007/s10584-009-9774-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/421891a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003018692", 
              "https://doi.org/10.1038/421891a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008218600", 
              "https://doi.org/10.1007/s003820050186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00007921", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005792655", 
              "https://doi.org/10.1007/pl00007921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-002-0296-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085138454", 
              "https://doi.org/10.1007/s00382-002-0296-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-003-0313-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047305108", 
              "https://doi.org/10.1007/s00382-003-0313-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1024458411589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051181123", 
              "https://doi.org/10.1023/a:1024458411589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031649031", 
              "https://doi.org/10.1038/nature06025"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-009-0615-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046717939", 
              "https://doi.org/10.1007/s00382-009-0615-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007895196", 
              "https://doi.org/10.1007/s003820050291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/21164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039310835", 
              "https://doi.org/10.1038/21164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028450143", 
              "https://doi.org/10.1038/nature03089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09763", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028595909", 
              "https://doi.org/10.1038/nature09763"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ngeo338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024056336", 
              "https://doi.org/10.1038/ngeo338"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1013051420309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000759233", 
              "https://doi.org/10.1023/a:1013051420309"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-09-17", 
        "datePublishedReg": "2011-09-17", 
        "description": "Regional distributions of the mean annual temperature in the 2000s are computed with and without the effect of anthropogenic influences on the climate in several sub-continental regions. Simulated global patterns of the temperature response to external forcings are regressed against observations using optimal fingerprinting. The global analysis provides constraints which are then used to construct the regional temperature distributions. A similar approach was also employed in previous work, but here the methodology is extended to examine changes in any region, including areas with a poor observational coverage that were omitted in the earlier study. Two different General Circulation Models (GCMs) are used in the analysis. Anthropogenic forcings are found to have at least quadrupled the likelihood of occurrence of a year warmer than the warmest year since 1900 in 23 out of the 24 regions. The temperature distributions computed with the two models are very similar. While a more detailed assessment of model dependencies remains to be made once additional suitable GCM simulations become available, the present study introduces the statistical methodology and demonstrates its first application. The derived information concerning the effect of human influences on the regional climate is useful for adaptation planning. Moreover, by pre-computing the change in the likelihood of exceeding a temperature threshold over a range of thresholds, this kind of analysis enables a near real-time assessment of the anthropogenic impact on the observed regional temperatures.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00382-011-1184-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7037241", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1049631", 
            "issn": [
              "0930-7575", 
              "1432-0894"
            ], 
            "name": "Climate Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "39"
          }
        ], 
        "keywords": [
          "general circulation model", 
          "anthropogenic forcing", 
          "different general circulation models", 
          "sub-continental regions", 
          "poor observational coverage", 
          "regional temperature distribution", 
          "mean annual temperature", 
          "near real-time assessment", 
          "GCM simulations", 
          "circulation model", 
          "regional climate", 
          "optimal fingerprinting", 
          "regional temperature", 
          "observational coverage", 
          "external forcing", 
          "anthropogenic influences", 
          "warm years", 
          "annual temperature", 
          "anthropogenic impacts", 
          "human influence", 
          "regional changes", 
          "forcing", 
          "adaptation planning", 
          "temperature response", 
          "global patterns", 
          "model dependency", 
          "range of thresholds", 
          "climate", 
          "regional distribution", 
          "likelihood of occurrence", 
          "temperature threshold", 
          "global analysis", 
          "region", 
          "detailed assessment", 
          "temperature distribution", 
          "temperature", 
          "distribution", 
          "changes", 
          "earlier studies", 
          "occurrence", 
          "area", 
          "last decade", 
          "first application", 
          "influence", 
          "model", 
          "statistical methodology", 
          "years", 
          "kind of analysis", 
          "constraints", 
          "similar approach", 
          "patterns", 
          "contribution", 
          "fingerprinting", 
          "impact", 
          "decades", 
          "analysis", 
          "simulations", 
          "assessment", 
          "range", 
          "coverage", 
          "previous work", 
          "threshold", 
          "study", 
          "methodology", 
          "real-time assessment", 
          "planning", 
          "information", 
          "response", 
          "likelihood", 
          "effect", 
          "present study", 
          "dependency", 
          "work", 
          "approach", 
          "applications", 
          "kind", 
          "observations", 
          "additional suitable GCM simulations", 
          "suitable GCM simulations", 
          "observed regional temperatures"
        ], 
        "name": "The contribution of anthropogenic forcings to regional changes in temperature during the last decade", 
        "pagination": "1259-1274", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1005068583"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00382-011-1184-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00382-011-1184-0", 
          "https://app.dimensions.ai/details/publication/pub.1005068583"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_531.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00382-011-1184-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-011-1184-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-011-1184-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-011-1184-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-011-1184-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    254 TRIPLES      22 PREDICATES      125 URIs      97 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00382-011-1184-0 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 anzsrc-for:0405
    4 anzsrc-for:0406
    5 schema:author N6827011b8f4a4911b37e3af00993cb4d
    6 schema:citation sg:pub.10.1007/pl00007921
    7 sg:pub.10.1007/pl00013733
    8 sg:pub.10.1007/s00382-002-0296-y
    9 sg:pub.10.1007/s00382-003-0313-9
    10 sg:pub.10.1007/s00382-009-0615-7
    11 sg:pub.10.1007/s003820050186
    12 sg:pub.10.1007/s003820050291
    13 sg:pub.10.1007/s10584-005-6778-2
    14 sg:pub.10.1007/s10584-009-9774-0
    15 sg:pub.10.1023/a:1013051420309
    16 sg:pub.10.1023/a:1024458411589
    17 sg:pub.10.1038/21164
    18 sg:pub.10.1038/421891a
    19 sg:pub.10.1038/nature03089
    20 sg:pub.10.1038/nature06019
    21 sg:pub.10.1038/nature06025
    22 sg:pub.10.1038/nature09763
    23 sg:pub.10.1038/ngeo338
    24 schema:datePublished 2011-09-17
    25 schema:datePublishedReg 2011-09-17
    26 schema:description Regional distributions of the mean annual temperature in the 2000s are computed with and without the effect of anthropogenic influences on the climate in several sub-continental regions. Simulated global patterns of the temperature response to external forcings are regressed against observations using optimal fingerprinting. The global analysis provides constraints which are then used to construct the regional temperature distributions. A similar approach was also employed in previous work, but here the methodology is extended to examine changes in any region, including areas with a poor observational coverage that were omitted in the earlier study. Two different General Circulation Models (GCMs) are used in the analysis. Anthropogenic forcings are found to have at least quadrupled the likelihood of occurrence of a year warmer than the warmest year since 1900 in 23 out of the 24 regions. The temperature distributions computed with the two models are very similar. While a more detailed assessment of model dependencies remains to be made once additional suitable GCM simulations become available, the present study introduces the statistical methodology and demonstrates its first application. The derived information concerning the effect of human influences on the regional climate is useful for adaptation planning. Moreover, by pre-computing the change in the likelihood of exceeding a temperature threshold over a range of thresholds, this kind of analysis enables a near real-time assessment of the anthropogenic impact on the observed regional temperatures.
    27 schema:genre article
    28 schema:inLanguage en
    29 schema:isAccessibleForFree false
    30 schema:isPartOf Nf110a21d21604c10a1acfdd62868748d
    31 Nf3cbd953aa614194a0b53b0123b94cc6
    32 sg:journal.1049631
    33 schema:keywords GCM simulations
    34 adaptation planning
    35 additional suitable GCM simulations
    36 analysis
    37 annual temperature
    38 anthropogenic forcing
    39 anthropogenic impacts
    40 anthropogenic influences
    41 applications
    42 approach
    43 area
    44 assessment
    45 changes
    46 circulation model
    47 climate
    48 constraints
    49 contribution
    50 coverage
    51 decades
    52 dependency
    53 detailed assessment
    54 different general circulation models
    55 distribution
    56 earlier studies
    57 effect
    58 external forcing
    59 fingerprinting
    60 first application
    61 forcing
    62 general circulation model
    63 global analysis
    64 global patterns
    65 human influence
    66 impact
    67 influence
    68 information
    69 kind
    70 kind of analysis
    71 last decade
    72 likelihood
    73 likelihood of occurrence
    74 mean annual temperature
    75 methodology
    76 model
    77 model dependency
    78 near real-time assessment
    79 observational coverage
    80 observations
    81 observed regional temperatures
    82 occurrence
    83 optimal fingerprinting
    84 patterns
    85 planning
    86 poor observational coverage
    87 present study
    88 previous work
    89 range
    90 range of thresholds
    91 real-time assessment
    92 region
    93 regional changes
    94 regional climate
    95 regional distribution
    96 regional temperature
    97 regional temperature distribution
    98 response
    99 similar approach
    100 simulations
    101 statistical methodology
    102 study
    103 sub-continental regions
    104 suitable GCM simulations
    105 temperature
    106 temperature distribution
    107 temperature response
    108 temperature threshold
    109 threshold
    110 warm years
    111 work
    112 years
    113 schema:name The contribution of anthropogenic forcings to regional changes in temperature during the last decade
    114 schema:pagination 1259-1274
    115 schema:productId N54eb1a6d6f1548789afeaa0311c4033b
    116 Nf2d0bebd1af149f4981e0b636535b814
    117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005068583
    118 https://doi.org/10.1007/s00382-011-1184-0
    119 schema:sdDatePublished 2021-12-01T19:24
    120 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    121 schema:sdPublisher Nb6a624c828244b558b0ab96ab5472f29
    122 schema:url https://doi.org/10.1007/s00382-011-1184-0
    123 sgo:license sg:explorer/license/
    124 sgo:sdDataset articles
    125 rdf:type schema:ScholarlyArticle
    126 N1e0f03360aa743ec898241a4a1bb988b rdf:first sg:person.011356656533.12
    127 rdf:rest N97b0815ae3044d6f9fb4093f6afc4628
    128 N54eb1a6d6f1548789afeaa0311c4033b schema:name doi
    129 schema:value 10.1007/s00382-011-1184-0
    130 rdf:type schema:PropertyValue
    131 N5a7accc09c7042c99d13cee1b6287626 rdf:first sg:person.015667030077.29
    132 rdf:rest N5c7792b5b3e0468c98c6c61d3ed7519c
    133 N5c7792b5b3e0468c98c6c61d3ed7519c rdf:first sg:person.0603650500.31
    134 rdf:rest N1e0f03360aa743ec898241a4a1bb988b
    135 N6827011b8f4a4911b37e3af00993cb4d rdf:first sg:person.01100172067.08
    136 rdf:rest N5a7accc09c7042c99d13cee1b6287626
    137 N97b0815ae3044d6f9fb4093f6afc4628 rdf:first sg:person.011033746441.19
    138 rdf:rest rdf:nil
    139 Nb6a624c828244b558b0ab96ab5472f29 schema:name Springer Nature - SN SciGraph project
    140 rdf:type schema:Organization
    141 Nf110a21d21604c10a1acfdd62868748d schema:issueNumber 6
    142 rdf:type schema:PublicationIssue
    143 Nf2d0bebd1af149f4981e0b636535b814 schema:name dimensions_id
    144 schema:value pub.1005068583
    145 rdf:type schema:PropertyValue
    146 Nf3cbd953aa614194a0b53b0123b94cc6 schema:volumeNumber 39
    147 rdf:type schema:PublicationVolume
    148 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Earth Sciences
    150 rdf:type schema:DefinedTerm
    151 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Atmospheric Sciences
    153 rdf:type schema:DefinedTerm
    154 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
    155 schema:name Oceanography
    156 rdf:type schema:DefinedTerm
    157 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    158 schema:name Physical Geography and Environmental Geoscience
    159 rdf:type schema:DefinedTerm
    160 sg:grant.7037241 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-011-1184-0
    161 rdf:type schema:MonetaryGrant
    162 sg:journal.1049631 schema:issn 0930-7575
    163 1432-0894
    164 schema:name Climate Dynamics
    165 schema:publisher Springer Nature
    166 rdf:type schema:Periodical
    167 sg:person.01100172067.08 schema:affiliation grid-institutes:grid.17100.37
    168 schema:familyName Christidis
    169 schema:givenName Nikolaos
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100172067.08
    171 rdf:type schema:Person
    172 sg:person.011033746441.19 schema:affiliation grid-institutes:grid.140139.e
    173 schema:familyName Nozawa
    174 schema:givenName Toru
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011033746441.19
    176 rdf:type schema:Person
    177 sg:person.011356656533.12 schema:affiliation grid-institutes:grid.140139.e
    178 schema:familyName Shiogama
    179 schema:givenName Hideo
    180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356656533.12
    181 rdf:type schema:Person
    182 sg:person.015667030077.29 schema:affiliation grid-institutes:grid.17100.37
    183 schema:familyName Stott
    184 schema:givenName Peter A.
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667030077.29
    186 rdf:type schema:Person
    187 sg:person.0603650500.31 schema:affiliation grid-institutes:grid.143640.4
    188 schema:familyName Zwiers
    189 schema:givenName Francis W.
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603650500.31
    191 rdf:type schema:Person
    192 sg:pub.10.1007/pl00007921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005792655
    193 https://doi.org/10.1007/pl00007921
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/pl00013733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049849175
    196 https://doi.org/10.1007/pl00013733
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/s00382-002-0296-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1085138454
    199 https://doi.org/10.1007/s00382-002-0296-y
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1007/s00382-003-0313-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047305108
    202 https://doi.org/10.1007/s00382-003-0313-9
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1007/s00382-009-0615-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046717939
    205 https://doi.org/10.1007/s00382-009-0615-7
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s003820050186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008218600
    208 https://doi.org/10.1007/s003820050186
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/s003820050291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007895196
    211 https://doi.org/10.1007/s003820050291
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s10584-005-6778-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037417665
    214 https://doi.org/10.1007/s10584-005-6778-2
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s10584-009-9774-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029044917
    217 https://doi.org/10.1007/s10584-009-9774-0
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1023/a:1013051420309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000759233
    220 https://doi.org/10.1023/a:1013051420309
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1023/a:1024458411589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051181123
    223 https://doi.org/10.1023/a:1024458411589
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/21164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039310835
    226 https://doi.org/10.1038/21164
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/421891a schema:sameAs https://app.dimensions.ai/details/publication/pub.1003018692
    229 https://doi.org/10.1038/421891a
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/nature03089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028450143
    232 https://doi.org/10.1038/nature03089
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/nature06019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052240973
    235 https://doi.org/10.1038/nature06019
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/nature06025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031649031
    238 https://doi.org/10.1038/nature06025
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/nature09763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028595909
    241 https://doi.org/10.1038/nature09763
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/ngeo338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024056336
    244 https://doi.org/10.1038/ngeo338
    245 rdf:type schema:CreativeWork
    246 grid-institutes:grid.140139.e schema:alternateName National Institute for Environmental Studies, 305-8506, Tsukuba, Ibaraki, Japan
    247 schema:name National Institute for Environmental Studies, 305-8506, Tsukuba, Ibaraki, Japan
    248 rdf:type schema:Organization
    249 grid-institutes:grid.143640.4 schema:alternateName Pacific Climate Impacts Consortium, University House 1, University of Victoria, PO Box 3060 Sta CSC, V8W 3R4, Victoria, BC, Canada
    250 schema:name Pacific Climate Impacts Consortium, University House 1, University of Victoria, PO Box 3060 Sta CSC, V8W 3R4, Victoria, BC, Canada
    251 rdf:type schema:Organization
    252 grid-institutes:grid.17100.37 schema:alternateName Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK
    253 schema:name Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK
    254 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...