The influence of synoptic airflow on UK daily precipitation extremes. Part II: regional climate model and E-OBS data validation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-09-13

AUTHORS

Douglas Maraun, Timothy J. Osborn, Henning W. Rust

ABSTRACT

We investigate how well the variability of extreme daily precipitation events across the United Kingdom is represented in a set of regional climate models and the E-OBS gridded data set. Instead of simply evaluating the climatologies of extreme precipitation measures, we develop an approach to validate the representation of physical mechanisms controlling extreme precipitation variability. In part I of this study we applied a statistical model to investigate the influence of the synoptic scale atmospheric circulation on extreme precipitation using observational rain gauge data. More specifically, airflow strength, direction and vorticity are used as predictors for the parameters of the generalised extreme value (GEV) distribution of local precipitation extremes. Here we employ this statistical model for our validation study. In a first step, the statistical model is calibrated against a gridded precipitation data set provided by the UK Met Office. In a second step, the same statistical model is calibrated against 14 ERA40 driven 25 km resolution RCMs from the ENSEMBLES project and the E-OBS gridded data set. Validation indices describing relevant physical mechanisms are derived from the statistical models for observations and RCMs and are compared using pattern standard deviation, pattern correlation and centered pattern root mean squared error as validation measures. The results for the different RCMs and E-OBS are visualised using Taylor diagrams. We show that the RCMs adequately simulate moderately extreme precipitation and the influence of airflow strength and vorticity on precipitation extremes, but show deficits in representing the influence of airflow direction. Also very rare extremes are misrepresented, but this result is afflicted with a high uncertainty. E-OBS shows considerable biases, in particular in regions of sparse data. The proposed approach might be used to validate other physical relationships in regional as well as global climate models. More... »

PAGES

287-301

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-011-1176-0

DOI

http://dx.doi.org/10.1007/s00382-011-1176-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023891983


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Leibniz Institute of Marine Sciences (IFM-GEOMAR), D\u00fcsternbrooker Weg 20, 24105, Kiel, Germany", 
          "id": "http://www.grid.ac/institutes/grid.15649.3f", 
          "name": [
            "Leibniz Institute of Marine Sciences (IFM-GEOMAR), D\u00fcsternbrooker Weg 20, 24105, Kiel, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maraun", 
        "givenName": "Douglas", 
        "id": "sg:person.015170627150.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015170627150.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climatic Research Unit, School of Environmental Sciences, NR4 7TJ, Norwich, UK", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Climatic Research Unit, School of Environmental Sciences, NR4 7TJ, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Osborn", 
        "givenName": "Timothy J.", 
        "id": "sg:person.01137064640.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137064640.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Freie Universit\u00e4t Berlin, Institut f\u00fcr Meteorologie, Carl-Heinrich-Becker-Weg 6-10, 12165, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.14095.39", 
          "name": [
            "Freie Universit\u00e4t Berlin, Institut f\u00fcr Meteorologie, Carl-Heinrich-Becker-Weg 6-10, 12165, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rust", 
        "givenName": "Henning W.", 
        "id": "sg:person.011003430317.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011003430317.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00382-009-0710-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007932541", 
          "https://doi.org/10.1007/s00382-009-0710-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10687-010-0107-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052004619", 
          "https://doi.org/10.1007/s10687-010-0107-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-009-0698-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034188814", 
          "https://doi.org/10.1007/s00382-009-0698-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjst/e2009-01093-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004415048", 
          "https://doi.org/10.1140/epjst/e2009-01093-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4471-3675-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001789312", 
          "https://doi.org/10.1007/978-1-4471-3675-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-007-9382-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009977588", 
          "https://doi.org/10.1007/s10584-007-9382-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10687-010-0102-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028663432", 
          "https://doi.org/10.1007/s10687-010-0102-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-006-9051-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033458924", 
          "https://doi.org/10.1007/s10584-006-9051-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-006-9226-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031777874", 
          "https://doi.org/10.1007/s10584-006-9226-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10687-007-0032-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022583551", 
          "https://doi.org/10.1007/s10687-007-0032-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-09-13", 
    "datePublishedReg": "2011-09-13", 
    "description": "We investigate how well the variability of extreme daily precipitation events across the United Kingdom is represented in a set of regional climate models and the E-OBS gridded data set. Instead of simply evaluating the climatologies of extreme precipitation measures, we develop an approach to validate the representation of physical mechanisms controlling extreme precipitation variability. In part I of this study we applied a statistical model to investigate the influence of the synoptic scale atmospheric circulation on extreme precipitation using observational rain gauge data. More specifically, airflow strength, direction and vorticity are used as predictors for the parameters of the generalised extreme value (GEV) distribution of local precipitation extremes. Here we employ this statistical model for our validation study. In a first step, the statistical model is calibrated against a gridded precipitation data set provided by the UK Met Office. In a second step, the same statistical model is calibrated against 14 ERA40 driven 25\u00a0km resolution RCMs from the ENSEMBLES project and the E-OBS gridded data set. Validation indices describing relevant physical mechanisms are derived from the statistical models for observations and RCMs and are compared using pattern standard deviation, pattern correlation and centered pattern root mean squared error as validation measures. The results for the different RCMs and E-OBS are visualised using Taylor diagrams. We show that the RCMs adequately simulate moderately extreme precipitation and the influence of airflow strength and vorticity on precipitation extremes, but show deficits in representing the influence of airflow direction. Also very rare extremes are misrepresented, but this result is afflicted with a high uncertainty. E-OBS shows considerable biases, in particular in regions of sparse data. The proposed approach might be used to validate other physical relationships in regional as well as global climate models.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-011-1176-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2756731", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "keywords": [
      "regional climate model", 
      "E-OBS", 
      "precipitation extremes", 
      "climate models", 
      "extreme precipitation", 
      "airflow strength", 
      "extreme daily precipitation events", 
      "synoptic-scale atmospheric circulation", 
      "local precipitation extremes", 
      "daily precipitation extremes", 
      "daily precipitation events", 
      "extreme precipitation variability", 
      "rain gauge data", 
      "global climate models", 
      "gridded precipitation data", 
      "UK Met Office", 
      "generalised extreme value distribution", 
      "synoptic airflows", 
      "atmospheric circulation", 
      "different RCMs", 
      "physical mechanisms", 
      "precipitation variability", 
      "ENSEMBLES project", 
      "precipitation events", 
      "gauge data", 
      "precipitation data", 
      "Met Office", 
      "rare extremes", 
      "precipitation measures", 
      "pattern correlation", 
      "Taylor diagram", 
      "considerable biases", 
      "extreme value distribution", 
      "RCM", 
      "statistical model", 
      "extremes", 
      "high uncertainty", 
      "root mean squared error", 
      "precipitation", 
      "relevant physical mechanisms", 
      "physical relationship", 
      "variability", 
      "value distribution", 
      "vorticity", 
      "ERA40", 
      "climatology", 
      "sparse data", 
      "airflow direction", 
      "circulation", 
      "data validation", 
      "data", 
      "biases", 
      "same statistical model", 
      "mean squared error", 
      "squared error", 
      "events", 
      "standard deviation", 
      "model", 
      "uncertainty", 
      "influence", 
      "region", 
      "Part I", 
      "direction", 
      "distribution", 
      "airflow", 
      "validation indices", 
      "validation measures", 
      "correlation", 
      "diagram", 
      "error", 
      "first step", 
      "results", 
      "validation", 
      "project", 
      "index", 
      "relationship", 
      "study", 
      "deviation", 
      "second step", 
      "strength", 
      "set", 
      "parameters", 
      "mechanism", 
      "United Kingdom", 
      "representation", 
      "validation study", 
      "approach", 
      "deficits", 
      "step", 
      "measures", 
      "Kingdom", 
      "office", 
      "observations", 
      "predictors", 
      "pattern standard deviation"
    ], 
    "name": "The influence of synoptic airflow on UK daily precipitation extremes. Part II: regional climate model and E-OBS data validation", 
    "pagination": "287-301", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023891983"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-011-1176-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-011-1176-0", 
      "https://app.dimensions.ai/details/publication/pub.1023891983"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_537.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-011-1176-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-011-1176-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-011-1176-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-011-1176-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-011-1176-0'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      22 PREDICATES      130 URIs      112 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-011-1176-0 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author Nffcf052bb0754703a9f6185dd467b0e3
4 schema:citation sg:pub.10.1007/978-1-4471-3675-0
5 sg:pub.10.1007/s00382-009-0698-1
6 sg:pub.10.1007/s00382-009-0710-9
7 sg:pub.10.1007/s10584-006-9051-4
8 sg:pub.10.1007/s10584-006-9226-z
9 sg:pub.10.1007/s10584-007-9382-9
10 sg:pub.10.1007/s10687-007-0032-4
11 sg:pub.10.1007/s10687-010-0102-x
12 sg:pub.10.1007/s10687-010-0107-5
13 sg:pub.10.1140/epjst/e2009-01093-7
14 schema:datePublished 2011-09-13
15 schema:datePublishedReg 2011-09-13
16 schema:description We investigate how well the variability of extreme daily precipitation events across the United Kingdom is represented in a set of regional climate models and the E-OBS gridded data set. Instead of simply evaluating the climatologies of extreme precipitation measures, we develop an approach to validate the representation of physical mechanisms controlling extreme precipitation variability. In part I of this study we applied a statistical model to investigate the influence of the synoptic scale atmospheric circulation on extreme precipitation using observational rain gauge data. More specifically, airflow strength, direction and vorticity are used as predictors for the parameters of the generalised extreme value (GEV) distribution of local precipitation extremes. Here we employ this statistical model for our validation study. In a first step, the statistical model is calibrated against a gridded precipitation data set provided by the UK Met Office. In a second step, the same statistical model is calibrated against 14 ERA40 driven 25 km resolution RCMs from the ENSEMBLES project and the E-OBS gridded data set. Validation indices describing relevant physical mechanisms are derived from the statistical models for observations and RCMs and are compared using pattern standard deviation, pattern correlation and centered pattern root mean squared error as validation measures. The results for the different RCMs and E-OBS are visualised using Taylor diagrams. We show that the RCMs adequately simulate moderately extreme precipitation and the influence of airflow strength and vorticity on precipitation extremes, but show deficits in representing the influence of airflow direction. Also very rare extremes are misrepresented, but this result is afflicted with a high uncertainty. E-OBS shows considerable biases, in particular in regions of sparse data. The proposed approach might be used to validate other physical relationships in regional as well as global climate models.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Na5bdf5049ef64ff5880ea624a4062363
21 Nf032b4c869fe4ca1bf9b72c505efba77
22 sg:journal.1049631
23 schema:keywords E-OBS
24 ENSEMBLES project
25 ERA40
26 Kingdom
27 Met Office
28 Part I
29 RCM
30 Taylor diagram
31 UK Met Office
32 United Kingdom
33 airflow
34 airflow direction
35 airflow strength
36 approach
37 atmospheric circulation
38 biases
39 circulation
40 climate models
41 climatology
42 considerable biases
43 correlation
44 daily precipitation events
45 daily precipitation extremes
46 data
47 data validation
48 deficits
49 deviation
50 diagram
51 different RCMs
52 direction
53 distribution
54 error
55 events
56 extreme daily precipitation events
57 extreme precipitation
58 extreme precipitation variability
59 extreme value distribution
60 extremes
61 first step
62 gauge data
63 generalised extreme value distribution
64 global climate models
65 gridded precipitation data
66 high uncertainty
67 index
68 influence
69 local precipitation extremes
70 mean squared error
71 measures
72 mechanism
73 model
74 observations
75 office
76 parameters
77 pattern correlation
78 pattern standard deviation
79 physical mechanisms
80 physical relationship
81 precipitation
82 precipitation data
83 precipitation events
84 precipitation extremes
85 precipitation measures
86 precipitation variability
87 predictors
88 project
89 rain gauge data
90 rare extremes
91 region
92 regional climate model
93 relationship
94 relevant physical mechanisms
95 representation
96 results
97 root mean squared error
98 same statistical model
99 second step
100 set
101 sparse data
102 squared error
103 standard deviation
104 statistical model
105 step
106 strength
107 study
108 synoptic airflows
109 synoptic-scale atmospheric circulation
110 uncertainty
111 validation
112 validation indices
113 validation measures
114 validation study
115 value distribution
116 variability
117 vorticity
118 schema:name The influence of synoptic airflow on UK daily precipitation extremes. Part II: regional climate model and E-OBS data validation
119 schema:pagination 287-301
120 schema:productId N68c3b388cbae445984228c6feafcf376
121 Naaef15cf823c413a8590959068536c4b
122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023891983
123 https://doi.org/10.1007/s00382-011-1176-0
124 schema:sdDatePublished 2022-06-01T22:10
125 schema:sdLicense https://scigraph.springernature.com/explorer/license/
126 schema:sdPublisher N2642886ee7f141a8a5a92f2ddc6a3d96
127 schema:url https://doi.org/10.1007/s00382-011-1176-0
128 sgo:license sg:explorer/license/
129 sgo:sdDataset articles
130 rdf:type schema:ScholarlyArticle
131 N2642886ee7f141a8a5a92f2ddc6a3d96 schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 N68c3b388cbae445984228c6feafcf376 schema:name dimensions_id
134 schema:value pub.1023891983
135 rdf:type schema:PropertyValue
136 Na5bdf5049ef64ff5880ea624a4062363 schema:volumeNumber 39
137 rdf:type schema:PublicationVolume
138 Naaef15cf823c413a8590959068536c4b schema:name doi
139 schema:value 10.1007/s00382-011-1176-0
140 rdf:type schema:PropertyValue
141 Nb11694b15ff64d979ba795a762e45cc0 rdf:first sg:person.01137064640.48
142 rdf:rest Nb9ab59bbbd7f4c17b8242e86f008cee1
143 Nb9ab59bbbd7f4c17b8242e86f008cee1 rdf:first sg:person.011003430317.09
144 rdf:rest rdf:nil
145 Nf032b4c869fe4ca1bf9b72c505efba77 schema:issueNumber 1-2
146 rdf:type schema:PublicationIssue
147 Nffcf052bb0754703a9f6185dd467b0e3 rdf:first sg:person.015170627150.69
148 rdf:rest Nb11694b15ff64d979ba795a762e45cc0
149 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
150 schema:name Earth Sciences
151 rdf:type schema:DefinedTerm
152 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
153 schema:name Atmospheric Sciences
154 rdf:type schema:DefinedTerm
155 sg:grant.2756731 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-011-1176-0
156 rdf:type schema:MonetaryGrant
157 sg:journal.1049631 schema:issn 0930-7575
158 1432-0894
159 schema:name Climate Dynamics
160 schema:publisher Springer Nature
161 rdf:type schema:Periodical
162 sg:person.011003430317.09 schema:affiliation grid-institutes:grid.14095.39
163 schema:familyName Rust
164 schema:givenName Henning W.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011003430317.09
166 rdf:type schema:Person
167 sg:person.01137064640.48 schema:affiliation grid-institutes:None
168 schema:familyName Osborn
169 schema:givenName Timothy J.
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137064640.48
171 rdf:type schema:Person
172 sg:person.015170627150.69 schema:affiliation grid-institutes:grid.15649.3f
173 schema:familyName Maraun
174 schema:givenName Douglas
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015170627150.69
176 rdf:type schema:Person
177 sg:pub.10.1007/978-1-4471-3675-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001789312
178 https://doi.org/10.1007/978-1-4471-3675-0
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s00382-009-0698-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034188814
181 https://doi.org/10.1007/s00382-009-0698-1
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s00382-009-0710-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007932541
184 https://doi.org/10.1007/s00382-009-0710-9
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s10584-006-9051-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033458924
187 https://doi.org/10.1007/s10584-006-9051-4
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/s10584-006-9226-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1031777874
190 https://doi.org/10.1007/s10584-006-9226-z
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/s10584-007-9382-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009977588
193 https://doi.org/10.1007/s10584-007-9382-9
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s10687-007-0032-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022583551
196 https://doi.org/10.1007/s10687-007-0032-4
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s10687-010-0102-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028663432
199 https://doi.org/10.1007/s10687-010-0102-x
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/s10687-010-0107-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052004619
202 https://doi.org/10.1007/s10687-010-0107-5
203 rdf:type schema:CreativeWork
204 sg:pub.10.1140/epjst/e2009-01093-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004415048
205 https://doi.org/10.1140/epjst/e2009-01093-7
206 rdf:type schema:CreativeWork
207 grid-institutes:None schema:alternateName Climatic Research Unit, School of Environmental Sciences, NR4 7TJ, Norwich, UK
208 schema:name Climatic Research Unit, School of Environmental Sciences, NR4 7TJ, Norwich, UK
209 rdf:type schema:Organization
210 grid-institutes:grid.14095.39 schema:alternateName Freie Universität Berlin, Institut für Meteorologie, Carl-Heinrich-Becker-Weg 6-10, 12165, Berlin, Germany
211 schema:name Freie Universität Berlin, Institut für Meteorologie, Carl-Heinrich-Becker-Weg 6-10, 12165, Berlin, Germany
212 rdf:type schema:Organization
213 grid-institutes:grid.15649.3f schema:alternateName Leibniz Institute of Marine Sciences (IFM-GEOMAR), Düsternbrooker Weg 20, 24105, Kiel, Germany
214 schema:name Leibniz Institute of Marine Sciences (IFM-GEOMAR), Düsternbrooker Weg 20, 24105, Kiel, Germany
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...