Ontology type: schema:ScholarlyArticle
2011-09-13
AUTHORSDouglas Maraun, Timothy J. Osborn, Henning W. Rust
ABSTRACTWe investigate how well the variability of extreme daily precipitation events across the United Kingdom is represented in a set of regional climate models and the E-OBS gridded data set. Instead of simply evaluating the climatologies of extreme precipitation measures, we develop an approach to validate the representation of physical mechanisms controlling extreme precipitation variability. In part I of this study we applied a statistical model to investigate the influence of the synoptic scale atmospheric circulation on extreme precipitation using observational rain gauge data. More specifically, airflow strength, direction and vorticity are used as predictors for the parameters of the generalised extreme value (GEV) distribution of local precipitation extremes. Here we employ this statistical model for our validation study. In a first step, the statistical model is calibrated against a gridded precipitation data set provided by the UK Met Office. In a second step, the same statistical model is calibrated against 14 ERA40 driven 25 km resolution RCMs from the ENSEMBLES project and the E-OBS gridded data set. Validation indices describing relevant physical mechanisms are derived from the statistical models for observations and RCMs and are compared using pattern standard deviation, pattern correlation and centered pattern root mean squared error as validation measures. The results for the different RCMs and E-OBS are visualised using Taylor diagrams. We show that the RCMs adequately simulate moderately extreme precipitation and the influence of airflow strength and vorticity on precipitation extremes, but show deficits in representing the influence of airflow direction. Also very rare extremes are misrepresented, but this result is afflicted with a high uncertainty. E-OBS shows considerable biases, in particular in regions of sparse data. The proposed approach might be used to validate other physical relationships in regional as well as global climate models. More... »
PAGES287-301
http://scigraph.springernature.com/pub.10.1007/s00382-011-1176-0
DOIhttp://dx.doi.org/10.1007/s00382-011-1176-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1023891983
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atmospheric Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Leibniz Institute of Marine Sciences (IFM-GEOMAR), D\u00fcsternbrooker Weg 20, 24105, Kiel, Germany",
"id": "http://www.grid.ac/institutes/grid.15649.3f",
"name": [
"Leibniz Institute of Marine Sciences (IFM-GEOMAR), D\u00fcsternbrooker Weg 20, 24105, Kiel, Germany"
],
"type": "Organization"
},
"familyName": "Maraun",
"givenName": "Douglas",
"id": "sg:person.015170627150.69",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015170627150.69"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Climatic Research Unit, School of Environmental Sciences, NR4 7TJ, Norwich, UK",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Climatic Research Unit, School of Environmental Sciences, NR4 7TJ, Norwich, UK"
],
"type": "Organization"
},
"familyName": "Osborn",
"givenName": "Timothy J.",
"id": "sg:person.01137064640.48",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137064640.48"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Freie Universit\u00e4t Berlin, Institut f\u00fcr Meteorologie, Carl-Heinrich-Becker-Weg 6-10, 12165, Berlin, Germany",
"id": "http://www.grid.ac/institutes/grid.14095.39",
"name": [
"Freie Universit\u00e4t Berlin, Institut f\u00fcr Meteorologie, Carl-Heinrich-Becker-Weg 6-10, 12165, Berlin, Germany"
],
"type": "Organization"
},
"familyName": "Rust",
"givenName": "Henning W.",
"id": "sg:person.011003430317.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011003430317.09"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00382-009-0710-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007932541",
"https://doi.org/10.1007/s00382-009-0710-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10687-010-0107-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052004619",
"https://doi.org/10.1007/s10687-010-0107-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-009-0698-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034188814",
"https://doi.org/10.1007/s00382-009-0698-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1140/epjst/e2009-01093-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004415048",
"https://doi.org/10.1140/epjst/e2009-01093-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4471-3675-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001789312",
"https://doi.org/10.1007/978-1-4471-3675-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10584-007-9382-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009977588",
"https://doi.org/10.1007/s10584-007-9382-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10687-010-0102-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028663432",
"https://doi.org/10.1007/s10687-010-0102-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10584-006-9051-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033458924",
"https://doi.org/10.1007/s10584-006-9051-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10584-006-9226-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031777874",
"https://doi.org/10.1007/s10584-006-9226-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10687-007-0032-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022583551",
"https://doi.org/10.1007/s10687-007-0032-4"
],
"type": "CreativeWork"
}
],
"datePublished": "2011-09-13",
"datePublishedReg": "2011-09-13",
"description": "We investigate how well the variability of extreme daily precipitation events across the United Kingdom is represented in a set of regional climate models and the E-OBS gridded data set. Instead of simply evaluating the climatologies of extreme precipitation measures, we develop an approach to validate the representation of physical mechanisms controlling extreme precipitation variability. In part I of this study we applied a statistical model to investigate the influence of the synoptic scale atmospheric circulation on extreme precipitation using observational rain gauge data. More specifically, airflow strength, direction and vorticity are used as predictors for the parameters of the generalised extreme value (GEV) distribution of local precipitation extremes. Here we employ this statistical model for our validation study. In a first step, the statistical model is calibrated against a gridded precipitation data set provided by the UK Met Office. In a second step, the same statistical model is calibrated against 14 ERA40 driven 25\u00a0km resolution RCMs from the ENSEMBLES project and the E-OBS gridded data set. Validation indices describing relevant physical mechanisms are derived from the statistical models for observations and RCMs and are compared using pattern standard deviation, pattern correlation and centered pattern root mean squared error as validation measures. The results for the different RCMs and E-OBS are visualised using Taylor diagrams. We show that the RCMs adequately simulate moderately extreme precipitation and the influence of airflow strength and vorticity on precipitation extremes, but show deficits in representing the influence of airflow direction. Also very rare extremes are misrepresented, but this result is afflicted with a high uncertainty. E-OBS shows considerable biases, in particular in regions of sparse data. The proposed approach might be used to validate other physical relationships in regional as well as global climate models.",
"genre": "article",
"id": "sg:pub.10.1007/s00382-011-1176-0",
"inLanguage": "en",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.2756731",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1049631",
"issn": [
"0930-7575",
"1432-0894"
],
"name": "Climate Dynamics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1-2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "39"
}
],
"keywords": [
"regional climate model",
"E-OBS",
"precipitation extremes",
"climate models",
"extreme precipitation",
"airflow strength",
"extreme daily precipitation events",
"synoptic-scale atmospheric circulation",
"local precipitation extremes",
"daily precipitation extremes",
"daily precipitation events",
"extreme precipitation variability",
"rain gauge data",
"global climate models",
"gridded precipitation data",
"UK Met Office",
"generalised extreme value distribution",
"synoptic airflows",
"atmospheric circulation",
"different RCMs",
"physical mechanisms",
"precipitation variability",
"ENSEMBLES project",
"precipitation events",
"gauge data",
"precipitation data",
"Met Office",
"rare extremes",
"precipitation measures",
"pattern correlation",
"Taylor diagram",
"considerable biases",
"extreme value distribution",
"RCM",
"statistical model",
"extremes",
"high uncertainty",
"root mean squared error",
"precipitation",
"relevant physical mechanisms",
"physical relationship",
"variability",
"value distribution",
"vorticity",
"ERA40",
"climatology",
"sparse data",
"airflow direction",
"circulation",
"data validation",
"data",
"biases",
"same statistical model",
"mean squared error",
"squared error",
"events",
"standard deviation",
"model",
"uncertainty",
"influence",
"region",
"Part I",
"direction",
"distribution",
"airflow",
"validation indices",
"validation measures",
"correlation",
"diagram",
"error",
"first step",
"results",
"validation",
"project",
"index",
"relationship",
"study",
"deviation",
"second step",
"strength",
"set",
"parameters",
"mechanism",
"United Kingdom",
"representation",
"validation study",
"approach",
"deficits",
"step",
"measures",
"Kingdom",
"office",
"observations",
"predictors",
"pattern standard deviation"
],
"name": "The influence of synoptic airflow on UK daily precipitation extremes. Part II: regional climate model and E-OBS data validation",
"pagination": "287-301",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1023891983"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00382-011-1176-0"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00382-011-1176-0",
"https://app.dimensions.ai/details/publication/pub.1023891983"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:10",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_537.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00382-011-1176-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-011-1176-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-011-1176-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-011-1176-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-011-1176-0'
This table displays all metadata directly associated to this object as RDF triples.
215 TRIPLES
22 PREDICATES
130 URIs
112 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00382-011-1176-0 | schema:about | anzsrc-for:04 |
2 | ″ | ″ | anzsrc-for:0401 |
3 | ″ | schema:author | Nffcf052bb0754703a9f6185dd467b0e3 |
4 | ″ | schema:citation | sg:pub.10.1007/978-1-4471-3675-0 |
5 | ″ | ″ | sg:pub.10.1007/s00382-009-0698-1 |
6 | ″ | ″ | sg:pub.10.1007/s00382-009-0710-9 |
7 | ″ | ″ | sg:pub.10.1007/s10584-006-9051-4 |
8 | ″ | ″ | sg:pub.10.1007/s10584-006-9226-z |
9 | ″ | ″ | sg:pub.10.1007/s10584-007-9382-9 |
10 | ″ | ″ | sg:pub.10.1007/s10687-007-0032-4 |
11 | ″ | ″ | sg:pub.10.1007/s10687-010-0102-x |
12 | ″ | ″ | sg:pub.10.1007/s10687-010-0107-5 |
13 | ″ | ″ | sg:pub.10.1140/epjst/e2009-01093-7 |
14 | ″ | schema:datePublished | 2011-09-13 |
15 | ″ | schema:datePublishedReg | 2011-09-13 |
16 | ″ | schema:description | We investigate how well the variability of extreme daily precipitation events across the United Kingdom is represented in a set of regional climate models and the E-OBS gridded data set. Instead of simply evaluating the climatologies of extreme precipitation measures, we develop an approach to validate the representation of physical mechanisms controlling extreme precipitation variability. In part I of this study we applied a statistical model to investigate the influence of the synoptic scale atmospheric circulation on extreme precipitation using observational rain gauge data. More specifically, airflow strength, direction and vorticity are used as predictors for the parameters of the generalised extreme value (GEV) distribution of local precipitation extremes. Here we employ this statistical model for our validation study. In a first step, the statistical model is calibrated against a gridded precipitation data set provided by the UK Met Office. In a second step, the same statistical model is calibrated against 14 ERA40 driven 25 km resolution RCMs from the ENSEMBLES project and the E-OBS gridded data set. Validation indices describing relevant physical mechanisms are derived from the statistical models for observations and RCMs and are compared using pattern standard deviation, pattern correlation and centered pattern root mean squared error as validation measures. The results for the different RCMs and E-OBS are visualised using Taylor diagrams. We show that the RCMs adequately simulate moderately extreme precipitation and the influence of airflow strength and vorticity on precipitation extremes, but show deficits in representing the influence of airflow direction. Also very rare extremes are misrepresented, but this result is afflicted with a high uncertainty. E-OBS shows considerable biases, in particular in regions of sparse data. The proposed approach might be used to validate other physical relationships in regional as well as global climate models. |
17 | ″ | schema:genre | article |
18 | ″ | schema:inLanguage | en |
19 | ″ | schema:isAccessibleForFree | false |
20 | ″ | schema:isPartOf | Na5bdf5049ef64ff5880ea624a4062363 |
21 | ″ | ″ | Nf032b4c869fe4ca1bf9b72c505efba77 |
22 | ″ | ″ | sg:journal.1049631 |
23 | ″ | schema:keywords | E-OBS |
24 | ″ | ″ | ENSEMBLES project |
25 | ″ | ″ | ERA40 |
26 | ″ | ″ | Kingdom |
27 | ″ | ″ | Met Office |
28 | ″ | ″ | Part I |
29 | ″ | ″ | RCM |
30 | ″ | ″ | Taylor diagram |
31 | ″ | ″ | UK Met Office |
32 | ″ | ″ | United Kingdom |
33 | ″ | ″ | airflow |
34 | ″ | ″ | airflow direction |
35 | ″ | ″ | airflow strength |
36 | ″ | ″ | approach |
37 | ″ | ″ | atmospheric circulation |
38 | ″ | ″ | biases |
39 | ″ | ″ | circulation |
40 | ″ | ″ | climate models |
41 | ″ | ″ | climatology |
42 | ″ | ″ | considerable biases |
43 | ″ | ″ | correlation |
44 | ″ | ″ | daily precipitation events |
45 | ″ | ″ | daily precipitation extremes |
46 | ″ | ″ | data |
47 | ″ | ″ | data validation |
48 | ″ | ″ | deficits |
49 | ″ | ″ | deviation |
50 | ″ | ″ | diagram |
51 | ″ | ″ | different RCMs |
52 | ″ | ″ | direction |
53 | ″ | ″ | distribution |
54 | ″ | ″ | error |
55 | ″ | ″ | events |
56 | ″ | ″ | extreme daily precipitation events |
57 | ″ | ″ | extreme precipitation |
58 | ″ | ″ | extreme precipitation variability |
59 | ″ | ″ | extreme value distribution |
60 | ″ | ″ | extremes |
61 | ″ | ″ | first step |
62 | ″ | ″ | gauge data |
63 | ″ | ″ | generalised extreme value distribution |
64 | ″ | ″ | global climate models |
65 | ″ | ″ | gridded precipitation data |
66 | ″ | ″ | high uncertainty |
67 | ″ | ″ | index |
68 | ″ | ″ | influence |
69 | ″ | ″ | local precipitation extremes |
70 | ″ | ″ | mean squared error |
71 | ″ | ″ | measures |
72 | ″ | ″ | mechanism |
73 | ″ | ″ | model |
74 | ″ | ″ | observations |
75 | ″ | ″ | office |
76 | ″ | ″ | parameters |
77 | ″ | ″ | pattern correlation |
78 | ″ | ″ | pattern standard deviation |
79 | ″ | ″ | physical mechanisms |
80 | ″ | ″ | physical relationship |
81 | ″ | ″ | precipitation |
82 | ″ | ″ | precipitation data |
83 | ″ | ″ | precipitation events |
84 | ″ | ″ | precipitation extremes |
85 | ″ | ″ | precipitation measures |
86 | ″ | ″ | precipitation variability |
87 | ″ | ″ | predictors |
88 | ″ | ″ | project |
89 | ″ | ″ | rain gauge data |
90 | ″ | ″ | rare extremes |
91 | ″ | ″ | region |
92 | ″ | ″ | regional climate model |
93 | ″ | ″ | relationship |
94 | ″ | ″ | relevant physical mechanisms |
95 | ″ | ″ | representation |
96 | ″ | ″ | results |
97 | ″ | ″ | root mean squared error |
98 | ″ | ″ | same statistical model |
99 | ″ | ″ | second step |
100 | ″ | ″ | set |
101 | ″ | ″ | sparse data |
102 | ″ | ″ | squared error |
103 | ″ | ″ | standard deviation |
104 | ″ | ″ | statistical model |
105 | ″ | ″ | step |
106 | ″ | ″ | strength |
107 | ″ | ″ | study |
108 | ″ | ″ | synoptic airflows |
109 | ″ | ″ | synoptic-scale atmospheric circulation |
110 | ″ | ″ | uncertainty |
111 | ″ | ″ | validation |
112 | ″ | ″ | validation indices |
113 | ″ | ″ | validation measures |
114 | ″ | ″ | validation study |
115 | ″ | ″ | value distribution |
116 | ″ | ″ | variability |
117 | ″ | ″ | vorticity |
118 | ″ | schema:name | The influence of synoptic airflow on UK daily precipitation extremes. Part II: regional climate model and E-OBS data validation |
119 | ″ | schema:pagination | 287-301 |
120 | ″ | schema:productId | N68c3b388cbae445984228c6feafcf376 |
121 | ″ | ″ | Naaef15cf823c413a8590959068536c4b |
122 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1023891983 |
123 | ″ | ″ | https://doi.org/10.1007/s00382-011-1176-0 |
124 | ″ | schema:sdDatePublished | 2022-06-01T22:10 |
125 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
126 | ″ | schema:sdPublisher | N2642886ee7f141a8a5a92f2ddc6a3d96 |
127 | ″ | schema:url | https://doi.org/10.1007/s00382-011-1176-0 |
128 | ″ | sgo:license | sg:explorer/license/ |
129 | ″ | sgo:sdDataset | articles |
130 | ″ | rdf:type | schema:ScholarlyArticle |
131 | N2642886ee7f141a8a5a92f2ddc6a3d96 | schema:name | Springer Nature - SN SciGraph project |
132 | ″ | rdf:type | schema:Organization |
133 | N68c3b388cbae445984228c6feafcf376 | schema:name | dimensions_id |
134 | ″ | schema:value | pub.1023891983 |
135 | ″ | rdf:type | schema:PropertyValue |
136 | Na5bdf5049ef64ff5880ea624a4062363 | schema:volumeNumber | 39 |
137 | ″ | rdf:type | schema:PublicationVolume |
138 | Naaef15cf823c413a8590959068536c4b | schema:name | doi |
139 | ″ | schema:value | 10.1007/s00382-011-1176-0 |
140 | ″ | rdf:type | schema:PropertyValue |
141 | Nb11694b15ff64d979ba795a762e45cc0 | rdf:first | sg:person.01137064640.48 |
142 | ″ | rdf:rest | Nb9ab59bbbd7f4c17b8242e86f008cee1 |
143 | Nb9ab59bbbd7f4c17b8242e86f008cee1 | rdf:first | sg:person.011003430317.09 |
144 | ″ | rdf:rest | rdf:nil |
145 | Nf032b4c869fe4ca1bf9b72c505efba77 | schema:issueNumber | 1-2 |
146 | ″ | rdf:type | schema:PublicationIssue |
147 | Nffcf052bb0754703a9f6185dd467b0e3 | rdf:first | sg:person.015170627150.69 |
148 | ″ | rdf:rest | Nb11694b15ff64d979ba795a762e45cc0 |
149 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
150 | ″ | schema:name | Earth Sciences |
151 | ″ | rdf:type | schema:DefinedTerm |
152 | anzsrc-for:0401 | schema:inDefinedTermSet | anzsrc-for: |
153 | ″ | schema:name | Atmospheric Sciences |
154 | ″ | rdf:type | schema:DefinedTerm |
155 | sg:grant.2756731 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s00382-011-1176-0 |
156 | ″ | rdf:type | schema:MonetaryGrant |
157 | sg:journal.1049631 | schema:issn | 0930-7575 |
158 | ″ | ″ | 1432-0894 |
159 | ″ | schema:name | Climate Dynamics |
160 | ″ | schema:publisher | Springer Nature |
161 | ″ | rdf:type | schema:Periodical |
162 | sg:person.011003430317.09 | schema:affiliation | grid-institutes:grid.14095.39 |
163 | ″ | schema:familyName | Rust |
164 | ″ | schema:givenName | Henning W. |
165 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011003430317.09 |
166 | ″ | rdf:type | schema:Person |
167 | sg:person.01137064640.48 | schema:affiliation | grid-institutes:None |
168 | ″ | schema:familyName | Osborn |
169 | ″ | schema:givenName | Timothy J. |
170 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137064640.48 |
171 | ″ | rdf:type | schema:Person |
172 | sg:person.015170627150.69 | schema:affiliation | grid-institutes:grid.15649.3f |
173 | ″ | schema:familyName | Maraun |
174 | ″ | schema:givenName | Douglas |
175 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015170627150.69 |
176 | ″ | rdf:type | schema:Person |
177 | sg:pub.10.1007/978-1-4471-3675-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1001789312 |
178 | ″ | ″ | https://doi.org/10.1007/978-1-4471-3675-0 |
179 | ″ | rdf:type | schema:CreativeWork |
180 | sg:pub.10.1007/s00382-009-0698-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1034188814 |
181 | ″ | ″ | https://doi.org/10.1007/s00382-009-0698-1 |
182 | ″ | rdf:type | schema:CreativeWork |
183 | sg:pub.10.1007/s00382-009-0710-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1007932541 |
184 | ″ | ″ | https://doi.org/10.1007/s00382-009-0710-9 |
185 | ″ | rdf:type | schema:CreativeWork |
186 | sg:pub.10.1007/s10584-006-9051-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1033458924 |
187 | ″ | ″ | https://doi.org/10.1007/s10584-006-9051-4 |
188 | ″ | rdf:type | schema:CreativeWork |
189 | sg:pub.10.1007/s10584-006-9226-z | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1031777874 |
190 | ″ | ″ | https://doi.org/10.1007/s10584-006-9226-z |
191 | ″ | rdf:type | schema:CreativeWork |
192 | sg:pub.10.1007/s10584-007-9382-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1009977588 |
193 | ″ | ″ | https://doi.org/10.1007/s10584-007-9382-9 |
194 | ″ | rdf:type | schema:CreativeWork |
195 | sg:pub.10.1007/s10687-007-0032-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1022583551 |
196 | ″ | ″ | https://doi.org/10.1007/s10687-007-0032-4 |
197 | ″ | rdf:type | schema:CreativeWork |
198 | sg:pub.10.1007/s10687-010-0102-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1028663432 |
199 | ″ | ″ | https://doi.org/10.1007/s10687-010-0102-x |
200 | ″ | rdf:type | schema:CreativeWork |
201 | sg:pub.10.1007/s10687-010-0107-5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1052004619 |
202 | ″ | ″ | https://doi.org/10.1007/s10687-010-0107-5 |
203 | ″ | rdf:type | schema:CreativeWork |
204 | sg:pub.10.1140/epjst/e2009-01093-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1004415048 |
205 | ″ | ″ | https://doi.org/10.1140/epjst/e2009-01093-7 |
206 | ″ | rdf:type | schema:CreativeWork |
207 | grid-institutes:None | schema:alternateName | Climatic Research Unit, School of Environmental Sciences, NR4 7TJ, Norwich, UK |
208 | ″ | schema:name | Climatic Research Unit, School of Environmental Sciences, NR4 7TJ, Norwich, UK |
209 | ″ | rdf:type | schema:Organization |
210 | grid-institutes:grid.14095.39 | schema:alternateName | Freie Universität Berlin, Institut für Meteorologie, Carl-Heinrich-Becker-Weg 6-10, 12165, Berlin, Germany |
211 | ″ | schema:name | Freie Universität Berlin, Institut für Meteorologie, Carl-Heinrich-Becker-Weg 6-10, 12165, Berlin, Germany |
212 | ″ | rdf:type | schema:Organization |
213 | grid-institutes:grid.15649.3f | schema:alternateName | Leibniz Institute of Marine Sciences (IFM-GEOMAR), Düsternbrooker Weg 20, 24105, Kiel, Germany |
214 | ″ | schema:name | Leibniz Institute of Marine Sciences (IFM-GEOMAR), Düsternbrooker Weg 20, 24105, Kiel, Germany |
215 | ″ | rdf:type | schema:Organization |