The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual variability View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-04-05

AUTHORS

M. Déqué, S. Somot, E. Sanchez-Gomez, C. M. Goodess, D. Jacob, G. Lenderink, O. B. Christensen

ABSTRACT

Various combinations of thirteen regional climate models (RCM) and six general circulation models (GCM) were used in FP6-ENSEMBLES. The response to the SRES-A1B greenhouse gas concentration scenario over Europe, calculated as the difference between the 2021–2050 and the 1961–1990 means can be viewed as an expected value about which various uncertainties exist. Uncertainties are measured here by variance explained for temperature and precipitation changes over eight European sub-areas. Three sources of uncertainty can be evaluated from the ENSEMBLES database. Sampling uncertainty is due to the fact that the model climate is estimated as an average over a finite number of years (30) despite a non-negligible interannual variability. Regional model uncertainty is due to the fact that the RCMs use different techniques to discretize the equations and to represent sub-grid effects. Global model uncertainty is due to the fact that the RCMs have been driven by different GCMs. Two methods are presented to fill the many empty cells of the ENSEMBLES RCM × GCM matrix. The first one is based on the same approach as in FP5-PRUDENCE. The second one uses the concept of weather regimes to attempt to separate the contribution of the GCM and the RCM. The variance of the climate response is analyzed with respect to the contribution of the GCM and the RCM. The two filling methods agree that the main contributor to the spread is the choice of the GCM, except for summer precipitation where the choice of the RCM dominates the uncertainty. Of course the implication of the GCM to the spread varies with the region, being maximum in the South-western part of Europe, whereas the continental parts are more sensitive to the choice of the RCM. The third cause of spread is systematically the interannual variability. The total uncertainty about temperature is not large enough to mask the 2021–2050 response which shows a similar pattern to the one obtained for 2071–2100 in PRUDENCE. The uncertainty about precipitation prevents any quantitative assessment on the response at grid point level for the 2021–2050 period. One can however see, as in PRUDENCE, a positive response in winter (more rain in the scenario than in the reference) in northern Europe and a negative summer response in southern Europe. More... »

PAGES

951-964

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-011-1053-x

DOI

http://dx.doi.org/10.1007/s00382-011-1053-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053730140


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "M\u00e9t\u00e9o-France, Centre National de Recherches M\u00e9t\u00e9orologiques, CNRS/GAME, 42 Avenue Coriolis, 31057, Toulouse Cedex 01, France", 
          "id": "http://www.grid.ac/institutes/grid.423777.2", 
          "name": [
            "M\u00e9t\u00e9o-France, Centre National de Recherches M\u00e9t\u00e9orologiques, CNRS/GAME, 42 Avenue Coriolis, 31057, Toulouse Cedex 01, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u00e9qu\u00e9", 
        "givenName": "M.", 
        "id": "sg:person.014043510764.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014043510764.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "M\u00e9t\u00e9o-France, Centre National de Recherches M\u00e9t\u00e9orologiques, CNRS/GAME, 42 Avenue Coriolis, 31057, Toulouse Cedex 01, France", 
          "id": "http://www.grid.ac/institutes/grid.423777.2", 
          "name": [
            "M\u00e9t\u00e9o-France, Centre National de Recherches M\u00e9t\u00e9orologiques, CNRS/GAME, 42 Avenue Coriolis, 31057, Toulouse Cedex 01, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Somot", 
        "givenName": "S.", 
        "id": "sg:person.014151541143.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014151541143.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cerfacs/CNRS, SUC URA1875, 42 Avenue Coriolis, 31057, Toulouse Cedex 01, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Cerfacs/CNRS, SUC URA1875, 42 Avenue Coriolis, 31057, Toulouse Cedex 01, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanchez-Gomez", 
        "givenName": "E.", 
        "id": "sg:person.012510464743.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012510464743.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climatic Research Unit, University of East Anglia, NR4 7TJ, Norwich, UK", 
          "id": "http://www.grid.ac/institutes/grid.8273.e", 
          "name": [
            "Climatic Research Unit, University of East Anglia, NR4 7TJ, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goodess", 
        "givenName": "C. M.", 
        "id": "sg:person.012776154461.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012776154461.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Meteorology, Bundesstr. 53, 20146, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max Planck Institute for Meteorology, Bundesstr. 53, 20146, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jacob", 
        "givenName": "D.", 
        "id": "sg:person.01251040714.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251040714.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "KNMI, Postbus 201, 3730 AE, De Bilt, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "KNMI, Postbus 201, 3730 AE, De Bilt, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lenderink", 
        "givenName": "G.", 
        "id": "sg:person.010547300007.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010547300007.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Danish Meteorological Institute, Lyngbyvej 100, 2100, Copenhagen \u00d8, Denmark", 
          "id": "http://www.grid.ac/institutes/grid.14170.33", 
          "name": [
            "Danish Meteorological Institute, Lyngbyvej 100, 2100, Copenhagen \u00d8, Denmark"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Christensen", 
        "givenName": "O. B.", 
        "id": "sg:person.0634755051.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634755051.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature06025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031649031", 
          "https://doi.org/10.1038/nature06025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015242699", 
          "https://doi.org/10.1007/s003820050010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-008-0502-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033948533", 
          "https://doi.org/10.1007/s00382-008-0502-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-006-9228-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037801261", 
          "https://doi.org/10.1007/s10584-006-9228-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-002-0277-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085171596", 
          "https://doi.org/10.1007/s00382-002-0277-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-006-9210-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021280557", 
          "https://doi.org/10.1007/s10584-006-9210-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-003-0317-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053411855", 
          "https://doi.org/10.1007/s00382-003-0317-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s007030170017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004446368", 
          "https://doi.org/10.1007/s007030170017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-006-0121-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047210404", 
          "https://doi.org/10.1007/s00382-006-0121-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-007-0227-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028903730", 
          "https://doi.org/10.1007/s00382-007-0227-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-04-05", 
    "datePublishedReg": "2011-04-05", 
    "description": "Various combinations of thirteen regional climate models (RCM) and six general circulation models (GCM) were used in FP6-ENSEMBLES. The response to the SRES-A1B greenhouse gas concentration scenario over Europe, calculated as the difference between the 2021\u20132050 and the 1961\u20131990 means can be viewed as an expected value about which various uncertainties exist. Uncertainties are measured here by variance explained for temperature and precipitation changes over eight European sub-areas. Three sources of uncertainty can be evaluated from the ENSEMBLES database. Sampling uncertainty is due to the fact that the model climate is estimated as an average over a finite number of years (30) despite a non-negligible interannual variability. Regional model uncertainty is due to the fact that the RCMs use different techniques to discretize the equations and to represent sub-grid effects. Global model uncertainty is due to the fact that the RCMs have been driven by different GCMs. Two methods are presented to fill the many empty cells of the ENSEMBLES RCM\u00a0\u00d7\u00a0GCM matrix. The first one is based on the same approach as in FP5-PRUDENCE. The second one uses the concept of weather regimes to attempt to separate the contribution of the GCM and the RCM. The variance of the climate response is analyzed with respect to the contribution of the GCM and the RCM. The two filling methods agree that the main contributor to the spread is the choice of the GCM, except for summer precipitation where the choice of the RCM dominates the uncertainty. Of course the implication of the GCM to the spread varies with the region, being maximum in the South-western part of Europe, whereas the continental parts are more sensitive to the choice of the RCM. The third cause of spread is systematically the interannual variability. The total uncertainty about temperature is not large enough to mask the 2021\u20132050 response which shows a similar pattern to the one obtained for 2071\u20132100 in PRUDENCE. The uncertainty about precipitation prevents any quantitative assessment on the response at grid point level for the 2021\u20132050 period. One can however see, as in PRUDENCE, a positive response in winter (more rain in the scenario than in the reference) in northern Europe and a negative summer response in southern Europe.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-011-1053-x", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "keywords": [
      "regional climate model", 
      "general circulation model", 
      "interannual variability", 
      "climate models", 
      "circulation model", 
      "ENSEMBLES regional climate models", 
      "different general circulation models", 
      "greenhouse gas concentration scenarios", 
      "global model uncertainty", 
      "grid point level", 
      "sub-grid effects", 
      "south-western part", 
      "model climate", 
      "precipitation changes", 
      "climate response", 
      "weather regimes", 
      "summer precipitation", 
      "summer response", 
      "concentration scenarios", 
      "model uncertainty", 
      "continental part", 
      "sources of uncertainty", 
      "regional scenarios", 
      "Ensemble database", 
      "northern Europe", 
      "total uncertainty", 
      "southern Europe", 
      "variability", 
      "precipitation", 
      "main contributor", 
      "uncertainty", 
      "climate", 
      "Europe", 
      "winter", 
      "quantitative assessment", 
      "similar pattern", 
      "scenarios", 
      "part", 
      "temperature", 
      "contribution", 
      "finite number", 
      "point level", 
      "model", 
      "regime", 
      "region", 
      "source", 
      "period", 
      "average", 
      "contributor", 
      "patterns", 
      "same approach", 
      "changes", 
      "filling method", 
      "variance", 
      "spread", 
      "second one", 
      "implications", 
      "first one", 
      "response", 
      "years", 
      "different techniques", 
      "equations", 
      "values", 
      "fact", 
      "assessment", 
      "one", 
      "empty cells", 
      "respect", 
      "combination", 
      "differences", 
      "matrix", 
      "means", 
      "cause", 
      "levels", 
      "prudence", 
      "method", 
      "choice", 
      "technique", 
      "approach", 
      "positive response", 
      "effect", 
      "number", 
      "database", 
      "concept", 
      "third cause", 
      "cells"
    ], 
    "name": "The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual variability", 
    "pagination": "951-964", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053730140"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-011-1053-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-011-1053-x", 
      "https://app.dimensions.ai/details/publication/pub.1053730140"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_554.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-011-1053-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-011-1053-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-011-1053-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-011-1053-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-011-1053-x'


 

This table displays all metadata directly associated to this object as RDF triples.

240 TRIPLES      21 PREDICATES      120 URIs      102 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-011-1053-x schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author Nd34ad1e1e7734310b6903052dabbcd44
4 schema:citation sg:pub.10.1007/s00382-002-0277-1
5 sg:pub.10.1007/s00382-003-0317-5
6 sg:pub.10.1007/s00382-006-0121-0
7 sg:pub.10.1007/s00382-007-0227-z
8 sg:pub.10.1007/s00382-008-0502-7
9 sg:pub.10.1007/s003820050010
10 sg:pub.10.1007/s007030170017
11 sg:pub.10.1007/s10584-006-9210-7
12 sg:pub.10.1007/s10584-006-9228-x
13 sg:pub.10.1038/nature06025
14 schema:datePublished 2011-04-05
15 schema:datePublishedReg 2011-04-05
16 schema:description Various combinations of thirteen regional climate models (RCM) and six general circulation models (GCM) were used in FP6-ENSEMBLES. The response to the SRES-A1B greenhouse gas concentration scenario over Europe, calculated as the difference between the 2021–2050 and the 1961–1990 means can be viewed as an expected value about which various uncertainties exist. Uncertainties are measured here by variance explained for temperature and precipitation changes over eight European sub-areas. Three sources of uncertainty can be evaluated from the ENSEMBLES database. Sampling uncertainty is due to the fact that the model climate is estimated as an average over a finite number of years (30) despite a non-negligible interannual variability. Regional model uncertainty is due to the fact that the RCMs use different techniques to discretize the equations and to represent sub-grid effects. Global model uncertainty is due to the fact that the RCMs have been driven by different GCMs. Two methods are presented to fill the many empty cells of the ENSEMBLES RCM × GCM matrix. The first one is based on the same approach as in FP5-PRUDENCE. The second one uses the concept of weather regimes to attempt to separate the contribution of the GCM and the RCM. The variance of the climate response is analyzed with respect to the contribution of the GCM and the RCM. The two filling methods agree that the main contributor to the spread is the choice of the GCM, except for summer precipitation where the choice of the RCM dominates the uncertainty. Of course the implication of the GCM to the spread varies with the region, being maximum in the South-western part of Europe, whereas the continental parts are more sensitive to the choice of the RCM. The third cause of spread is systematically the interannual variability. The total uncertainty about temperature is not large enough to mask the 2021–2050 response which shows a similar pattern to the one obtained for 2071–2100 in PRUDENCE. The uncertainty about precipitation prevents any quantitative assessment on the response at grid point level for the 2021–2050 period. One can however see, as in PRUDENCE, a positive response in winter (more rain in the scenario than in the reference) in northern Europe and a negative summer response in southern Europe.
17 schema:genre article
18 schema:isAccessibleForFree true
19 schema:isPartOf N580d534f6c6e4e09896b6e248698f1ce
20 N797a792590d84163aacca4873dd5a947
21 sg:journal.1049631
22 schema:keywords ENSEMBLES regional climate models
23 Ensemble database
24 Europe
25 approach
26 assessment
27 average
28 cause
29 cells
30 changes
31 choice
32 circulation model
33 climate
34 climate models
35 climate response
36 combination
37 concentration scenarios
38 concept
39 continental part
40 contribution
41 contributor
42 database
43 differences
44 different general circulation models
45 different techniques
46 effect
47 empty cells
48 equations
49 fact
50 filling method
51 finite number
52 first one
53 general circulation model
54 global model uncertainty
55 greenhouse gas concentration scenarios
56 grid point level
57 implications
58 interannual variability
59 levels
60 main contributor
61 matrix
62 means
63 method
64 model
65 model climate
66 model uncertainty
67 northern Europe
68 number
69 one
70 part
71 patterns
72 period
73 point level
74 positive response
75 precipitation
76 precipitation changes
77 prudence
78 quantitative assessment
79 regime
80 region
81 regional climate model
82 regional scenarios
83 respect
84 response
85 same approach
86 scenarios
87 second one
88 similar pattern
89 source
90 sources of uncertainty
91 south-western part
92 southern Europe
93 spread
94 sub-grid effects
95 summer precipitation
96 summer response
97 technique
98 temperature
99 third cause
100 total uncertainty
101 uncertainty
102 values
103 variability
104 variance
105 weather regimes
106 winter
107 years
108 schema:name The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual variability
109 schema:pagination 951-964
110 schema:productId N3407691c26974a3e91ffeea3c9ee7cd4
111 Nae87d6778ff2473f93e30b17e706e215
112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053730140
113 https://doi.org/10.1007/s00382-011-1053-x
114 schema:sdDatePublished 2022-10-01T06:37
115 schema:sdLicense https://scigraph.springernature.com/explorer/license/
116 schema:sdPublisher Na8c17a01f5ca415b95560927574d3708
117 schema:url https://doi.org/10.1007/s00382-011-1053-x
118 sgo:license sg:explorer/license/
119 sgo:sdDataset articles
120 rdf:type schema:ScholarlyArticle
121 N0d3cffd12fee4530b70fd3646183d02f rdf:first sg:person.01251040714.08
122 rdf:rest Ne0e2c5beb11c41648e213f28f3265cc0
123 N1416b3c15abb4ae79031782a8b166fd8 rdf:first sg:person.0634755051.55
124 rdf:rest rdf:nil
125 N242356f2e4014c28a23bbeb7e1122f4b rdf:first sg:person.014151541143.15
126 rdf:rest Nc4c6e1ed09f24dfbb0f411f88dcb42e2
127 N3407691c26974a3e91ffeea3c9ee7cd4 schema:name doi
128 schema:value 10.1007/s00382-011-1053-x
129 rdf:type schema:PropertyValue
130 N580d534f6c6e4e09896b6e248698f1ce schema:volumeNumber 38
131 rdf:type schema:PublicationVolume
132 N797a792590d84163aacca4873dd5a947 schema:issueNumber 5-6
133 rdf:type schema:PublicationIssue
134 N99665dac915348f188ada8c3a9a9d015 rdf:first sg:person.012776154461.95
135 rdf:rest N0d3cffd12fee4530b70fd3646183d02f
136 Na8c17a01f5ca415b95560927574d3708 schema:name Springer Nature - SN SciGraph project
137 rdf:type schema:Organization
138 Nae87d6778ff2473f93e30b17e706e215 schema:name dimensions_id
139 schema:value pub.1053730140
140 rdf:type schema:PropertyValue
141 Nc4c6e1ed09f24dfbb0f411f88dcb42e2 rdf:first sg:person.012510464743.03
142 rdf:rest N99665dac915348f188ada8c3a9a9d015
143 Nd34ad1e1e7734310b6903052dabbcd44 rdf:first sg:person.014043510764.56
144 rdf:rest N242356f2e4014c28a23bbeb7e1122f4b
145 Ne0e2c5beb11c41648e213f28f3265cc0 rdf:first sg:person.010547300007.01
146 rdf:rest N1416b3c15abb4ae79031782a8b166fd8
147 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
148 schema:name Earth Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
151 schema:name Atmospheric Sciences
152 rdf:type schema:DefinedTerm
153 sg:journal.1049631 schema:issn 0930-7575
154 1432-0894
155 schema:name Climate Dynamics
156 schema:publisher Springer Nature
157 rdf:type schema:Periodical
158 sg:person.010547300007.01 schema:affiliation grid-institutes:grid.8653.8
159 schema:familyName Lenderink
160 schema:givenName G.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010547300007.01
162 rdf:type schema:Person
163 sg:person.01251040714.08 schema:affiliation grid-institutes:grid.450268.d
164 schema:familyName Jacob
165 schema:givenName D.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251040714.08
167 rdf:type schema:Person
168 sg:person.012510464743.03 schema:affiliation grid-institutes:None
169 schema:familyName Sanchez-Gomez
170 schema:givenName E.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012510464743.03
172 rdf:type schema:Person
173 sg:person.012776154461.95 schema:affiliation grid-institutes:grid.8273.e
174 schema:familyName Goodess
175 schema:givenName C. M.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012776154461.95
177 rdf:type schema:Person
178 sg:person.014043510764.56 schema:affiliation grid-institutes:grid.423777.2
179 schema:familyName Déqué
180 schema:givenName M.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014043510764.56
182 rdf:type schema:Person
183 sg:person.014151541143.15 schema:affiliation grid-institutes:grid.423777.2
184 schema:familyName Somot
185 schema:givenName S.
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014151541143.15
187 rdf:type schema:Person
188 sg:person.0634755051.55 schema:affiliation grid-institutes:grid.14170.33
189 schema:familyName Christensen
190 schema:givenName O. B.
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634755051.55
192 rdf:type schema:Person
193 sg:pub.10.1007/s00382-002-0277-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085171596
194 https://doi.org/10.1007/s00382-002-0277-1
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s00382-003-0317-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053411855
197 https://doi.org/10.1007/s00382-003-0317-5
198 rdf:type schema:CreativeWork
199 sg:pub.10.1007/s00382-006-0121-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047210404
200 https://doi.org/10.1007/s00382-006-0121-0
201 rdf:type schema:CreativeWork
202 sg:pub.10.1007/s00382-007-0227-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1028903730
203 https://doi.org/10.1007/s00382-007-0227-z
204 rdf:type schema:CreativeWork
205 sg:pub.10.1007/s00382-008-0502-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033948533
206 https://doi.org/10.1007/s00382-008-0502-7
207 rdf:type schema:CreativeWork
208 sg:pub.10.1007/s003820050010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015242699
209 https://doi.org/10.1007/s003820050010
210 rdf:type schema:CreativeWork
211 sg:pub.10.1007/s007030170017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004446368
212 https://doi.org/10.1007/s007030170017
213 rdf:type schema:CreativeWork
214 sg:pub.10.1007/s10584-006-9210-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021280557
215 https://doi.org/10.1007/s10584-006-9210-7
216 rdf:type schema:CreativeWork
217 sg:pub.10.1007/s10584-006-9228-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037801261
218 https://doi.org/10.1007/s10584-006-9228-x
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/nature06025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031649031
221 https://doi.org/10.1038/nature06025
222 rdf:type schema:CreativeWork
223 grid-institutes:None schema:alternateName Cerfacs/CNRS, SUC URA1875, 42 Avenue Coriolis, 31057, Toulouse Cedex 01, France
224 schema:name Cerfacs/CNRS, SUC URA1875, 42 Avenue Coriolis, 31057, Toulouse Cedex 01, France
225 rdf:type schema:Organization
226 grid-institutes:grid.14170.33 schema:alternateName Danish Meteorological Institute, Lyngbyvej 100, 2100, Copenhagen Ø, Denmark
227 schema:name Danish Meteorological Institute, Lyngbyvej 100, 2100, Copenhagen Ø, Denmark
228 rdf:type schema:Organization
229 grid-institutes:grid.423777.2 schema:alternateName Météo-France, Centre National de Recherches Météorologiques, CNRS/GAME, 42 Avenue Coriolis, 31057, Toulouse Cedex 01, France
230 schema:name Météo-France, Centre National de Recherches Météorologiques, CNRS/GAME, 42 Avenue Coriolis, 31057, Toulouse Cedex 01, France
231 rdf:type schema:Organization
232 grid-institutes:grid.450268.d schema:alternateName Max Planck Institute for Meteorology, Bundesstr. 53, 20146, Hamburg, Germany
233 schema:name Max Planck Institute for Meteorology, Bundesstr. 53, 20146, Hamburg, Germany
234 rdf:type schema:Organization
235 grid-institutes:grid.8273.e schema:alternateName Climatic Research Unit, University of East Anglia, NR4 7TJ, Norwich, UK
236 schema:name Climatic Research Unit, University of East Anglia, NR4 7TJ, Norwich, UK
237 rdf:type schema:Organization
238 grid-institutes:grid.8653.8 schema:alternateName KNMI, Postbus 201, 3730 AE, De Bilt, The Netherlands
239 schema:name KNMI, Postbus 201, 3730 AE, De Bilt, The Netherlands
240 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...