Ontology type: schema:ScholarlyArticle Open Access: True
2010-12-31
AUTHORSClara Deser, Adam Phillips, Vincent Bourdette, Haiyan Teng
ABSTRACTUncertainty in future climate change presents a key challenge for adaptation planning. In this study, uncertainty arising from internal climate variability is investigated using a new 40-member ensemble conducted with the National Center for Atmospheric Research Community Climate System Model Version 3 (CCSM3) under the SRES A1B greenhouse gas and ozone recovery forcing scenarios during 2000–2060. The contribution of intrinsic atmospheric variability to the total uncertainty is further examined using a 10,000-year control integration of the atmospheric model component of CCSM3 under fixed boundary conditions. The global climate response is characterized in terms of air temperature, precipitation, and sea level pressure during winter and summer. The dominant source of uncertainty in the simulated climate response at middle and high latitudes is internal atmospheric variability associated with the annular modes of circulation variability. Coupled ocean-atmosphere variability plays a dominant role in the tropics, with attendant effects at higher latitudes via atmospheric teleconnections. Uncertainties in the forced response are generally larger for sea level pressure than precipitation, and smallest for air temperature. Accordingly, forced changes in air temperature can be detected earlier and with fewer ensemble members than those in atmospheric circulation and precipitation. Implications of the results for detection and attribution of observed climate change and for multi-model climate assessments are discussed. Internal variability is estimated to account for at least half of the inter-model spread in projected climate trends during 2005–2060 in the CMIP3 multi-model ensemble. More... »
PAGES527-546
http://scigraph.springernature.com/pub.10.1007/s00382-010-0977-x
DOIhttp://dx.doi.org/10.1007/s00382-010-0977-x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1021861148
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atmospheric Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Oceanography",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA",
"id": "http://www.grid.ac/institutes/grid.57828.30",
"name": [
"Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA"
],
"type": "Organization"
},
"familyName": "Deser",
"givenName": "Clara",
"id": "sg:person.0653551302.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653551302.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA",
"id": "http://www.grid.ac/institutes/grid.57828.30",
"name": [
"Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA"
],
"type": "Organization"
},
"familyName": "Phillips",
"givenName": "Adam",
"id": "sg:person.0763364265.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763364265.06"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Centre Europ\u00e9en de Recherche et de Formation Avanc\u00e9e en Calcul Scientifique (CERFACS), Toulouse, France",
"id": "http://www.grid.ac/institutes/grid.15040.30",
"name": [
"Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA",
"Centre Europ\u00e9en de Recherche et de Formation Avanc\u00e9e en Calcul Scientifique (CERFACS), Toulouse, France"
],
"type": "Organization"
},
"familyName": "Bourdette",
"givenName": "Vincent",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA",
"id": "http://www.grid.ac/institutes/grid.57828.30",
"name": [
"Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA"
],
"type": "Organization"
},
"familyName": "Teng",
"givenName": "Haiyan",
"id": "sg:person.014220627757.04",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014220627757.04"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00208987",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032849566",
"https://doi.org/10.1007/bf00208987"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s003820050135",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030728378",
"https://doi.org/10.1007/s003820050135"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-008-0474-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049492449",
"https://doi.org/10.1007/s00382-008-0474-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-010-0810-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001203373",
"https://doi.org/10.1007/s00382-010-0810-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s003820050042",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1054515236",
"https://doi.org/10.1007/s003820050042"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s003820050284",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001545167",
"https://doi.org/10.1007/s003820050284"
],
"type": "CreativeWork"
}
],
"datePublished": "2010-12-31",
"datePublishedReg": "2010-12-31",
"description": "Uncertainty in future climate change presents a key challenge for adaptation planning. In this study, uncertainty arising from internal climate variability is investigated using a new 40-member ensemble conducted with the National Center for Atmospheric Research Community Climate System Model Version 3 (CCSM3) under the SRES A1B greenhouse gas and ozone recovery forcing scenarios during 2000\u20132060. The contribution of intrinsic atmospheric variability to the total uncertainty is further examined using a 10,000-year control integration of the atmospheric model component of CCSM3 under fixed boundary conditions. The global climate response is characterized in terms of air temperature, precipitation, and sea level pressure during winter and summer. The dominant source of uncertainty in the simulated climate response at middle and high latitudes is internal atmospheric variability associated with the annular modes of circulation variability. Coupled ocean-atmosphere variability plays a dominant role in the tropics, with attendant effects at higher latitudes via atmospheric teleconnections. Uncertainties in the forced response are generally larger for sea level pressure than precipitation, and smallest for air temperature. Accordingly, forced changes in air temperature can be detected earlier and with fewer ensemble members than those in atmospheric circulation and precipitation. Implications of the results for detection and attribution of observed climate change and for multi-model climate assessments are discussed. Internal variability is estimated to account for at least half of the inter-model spread in projected climate trends during 2005\u20132060 in the CMIP3 multi-model ensemble.",
"genre": "article",
"id": "sg:pub.10.1007/s00382-010-0977-x",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1049631",
"issn": [
"0930-7575",
"1432-0894"
],
"name": "Climate Dynamics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3-4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "38"
}
],
"keywords": [
"Community Climate System Model version 3",
"sea level pressure",
"air temperature",
"atmospheric variability",
"internal variability",
"level pressure",
"climate response",
"high latitudes",
"Atmospheric Research Community Climate System Model version 3",
"climate change",
"CMIP3 multi-model ensemble",
"internal climate variability",
"intrinsic atmospheric variability",
"year control integration",
"atmospheric model component",
"simulated climate response",
"internal atmospheric variability",
"ocean\u2013atmosphere variability",
"Model version 3",
"inter-model spread",
"global climate response",
"multi-model ensemble",
"climate change projections",
"observed climate change",
"future climate change",
"circulation variability",
"atmospheric teleconnections",
"Annular Mode",
"atmospheric circulation",
"climate variability",
"ozone recovery",
"change projections",
"climate trends",
"ensemble members",
"control integration",
"Climate Assessment",
"version 3",
"dominant source",
"National Center",
"greenhouse gas",
"adaptation planning",
"precipitation",
"variability",
"total uncertainty",
"model components",
"latitudes",
"dominant role",
"attendant effects",
"uncertainty",
"teleconnections",
"ensemble",
"tropics",
"winter",
"summer",
"circulation",
"boundary conditions",
"temperature",
"changes",
"trends",
"projections",
"source",
"gas",
"scenarios",
"attribution",
"contribution",
"pressure",
"implications",
"conditions",
"response",
"components",
"half",
"center",
"assessment",
"planning",
"spread",
"key challenges",
"role",
"mode",
"results",
"study",
"terms",
"integration",
"recovery",
"members",
"effect",
"challenges",
"detection"
],
"name": "Uncertainty in climate change projections: the role of internal variability",
"pagination": "527-546",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1021861148"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00382-010-0977-x"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00382-010-0977-x",
"https://app.dimensions.ai/details/publication/pub.1021861148"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:09",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_521.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00382-010-0977-x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0977-x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0977-x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0977-x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0977-x'
This table displays all metadata directly associated to this object as RDF triples.
197 TRIPLES
22 PREDICATES
119 URIs
104 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00382-010-0977-x | schema:about | anzsrc-for:04 |
2 | ″ | ″ | anzsrc-for:0401 |
3 | ″ | ″ | anzsrc-for:0405 |
4 | ″ | schema:author | N469159a6842647a89fb236ebe32142c7 |
5 | ″ | schema:citation | sg:pub.10.1007/bf00208987 |
6 | ″ | ″ | sg:pub.10.1007/s00382-008-0474-7 |
7 | ″ | ″ | sg:pub.10.1007/s00382-010-0810-6 |
8 | ″ | ″ | sg:pub.10.1007/s003820050042 |
9 | ″ | ″ | sg:pub.10.1007/s003820050135 |
10 | ″ | ″ | sg:pub.10.1007/s003820050284 |
11 | ″ | schema:datePublished | 2010-12-31 |
12 | ″ | schema:datePublishedReg | 2010-12-31 |
13 | ″ | schema:description | Uncertainty in future climate change presents a key challenge for adaptation planning. In this study, uncertainty arising from internal climate variability is investigated using a new 40-member ensemble conducted with the National Center for Atmospheric Research Community Climate System Model Version 3 (CCSM3) under the SRES A1B greenhouse gas and ozone recovery forcing scenarios during 2000–2060. The contribution of intrinsic atmospheric variability to the total uncertainty is further examined using a 10,000-year control integration of the atmospheric model component of CCSM3 under fixed boundary conditions. The global climate response is characterized in terms of air temperature, precipitation, and sea level pressure during winter and summer. The dominant source of uncertainty in the simulated climate response at middle and high latitudes is internal atmospheric variability associated with the annular modes of circulation variability. Coupled ocean-atmosphere variability plays a dominant role in the tropics, with attendant effects at higher latitudes via atmospheric teleconnections. Uncertainties in the forced response are generally larger for sea level pressure than precipitation, and smallest for air temperature. Accordingly, forced changes in air temperature can be detected earlier and with fewer ensemble members than those in atmospheric circulation and precipitation. Implications of the results for detection and attribution of observed climate change and for multi-model climate assessments are discussed. Internal variability is estimated to account for at least half of the inter-model spread in projected climate trends during 2005–2060 in the CMIP3 multi-model ensemble. |
14 | ″ | schema:genre | article |
15 | ″ | schema:inLanguage | en |
16 | ″ | schema:isAccessibleForFree | true |
17 | ″ | schema:isPartOf | N1dc82b3c2c2e4b7590770b557f4dad9e |
18 | ″ | ″ | N25352b605a0340169d57988369dbb44d |
19 | ″ | ″ | sg:journal.1049631 |
20 | ″ | schema:keywords | Annular Mode |
21 | ″ | ″ | Atmospheric Research Community Climate System Model version 3 |
22 | ″ | ″ | CMIP3 multi-model ensemble |
23 | ″ | ″ | Climate Assessment |
24 | ″ | ″ | Community Climate System Model version 3 |
25 | ″ | ″ | Model version 3 |
26 | ″ | ″ | National Center |
27 | ″ | ″ | adaptation planning |
28 | ″ | ″ | air temperature |
29 | ″ | ″ | assessment |
30 | ″ | ″ | atmospheric circulation |
31 | ″ | ″ | atmospheric model component |
32 | ″ | ″ | atmospheric teleconnections |
33 | ″ | ″ | atmospheric variability |
34 | ″ | ″ | attendant effects |
35 | ″ | ″ | attribution |
36 | ″ | ″ | boundary conditions |
37 | ″ | ″ | center |
38 | ″ | ″ | challenges |
39 | ″ | ″ | change projections |
40 | ″ | ″ | changes |
41 | ″ | ″ | circulation |
42 | ″ | ″ | circulation variability |
43 | ″ | ″ | climate change |
44 | ″ | ″ | climate change projections |
45 | ″ | ″ | climate response |
46 | ″ | ″ | climate trends |
47 | ″ | ″ | climate variability |
48 | ″ | ″ | components |
49 | ″ | ″ | conditions |
50 | ″ | ″ | contribution |
51 | ″ | ″ | control integration |
52 | ″ | ″ | detection |
53 | ″ | ″ | dominant role |
54 | ″ | ″ | dominant source |
55 | ″ | ″ | effect |
56 | ″ | ″ | ensemble |
57 | ″ | ″ | ensemble members |
58 | ″ | ″ | future climate change |
59 | ″ | ″ | gas |
60 | ″ | ″ | global climate response |
61 | ″ | ″ | greenhouse gas |
62 | ″ | ″ | half |
63 | ″ | ″ | high latitudes |
64 | ″ | ″ | implications |
65 | ″ | ″ | integration |
66 | ″ | ″ | inter-model spread |
67 | ″ | ″ | internal atmospheric variability |
68 | ″ | ″ | internal climate variability |
69 | ″ | ″ | internal variability |
70 | ″ | ″ | intrinsic atmospheric variability |
71 | ″ | ″ | key challenges |
72 | ″ | ″ | latitudes |
73 | ″ | ″ | level pressure |
74 | ″ | ″ | members |
75 | ″ | ″ | mode |
76 | ″ | ″ | model components |
77 | ″ | ″ | multi-model ensemble |
78 | ″ | ″ | observed climate change |
79 | ″ | ″ | ocean–atmosphere variability |
80 | ″ | ″ | ozone recovery |
81 | ″ | ″ | planning |
82 | ″ | ″ | precipitation |
83 | ″ | ″ | pressure |
84 | ″ | ″ | projections |
85 | ″ | ″ | recovery |
86 | ″ | ″ | response |
87 | ″ | ″ | results |
88 | ″ | ″ | role |
89 | ″ | ″ | scenarios |
90 | ″ | ″ | sea level pressure |
91 | ″ | ″ | simulated climate response |
92 | ″ | ″ | source |
93 | ″ | ″ | spread |
94 | ″ | ″ | study |
95 | ″ | ″ | summer |
96 | ″ | ″ | teleconnections |
97 | ″ | ″ | temperature |
98 | ″ | ″ | terms |
99 | ″ | ″ | total uncertainty |
100 | ″ | ″ | trends |
101 | ″ | ″ | tropics |
102 | ″ | ″ | uncertainty |
103 | ″ | ″ | variability |
104 | ″ | ″ | version 3 |
105 | ″ | ″ | winter |
106 | ″ | ″ | year control integration |
107 | ″ | schema:name | Uncertainty in climate change projections: the role of internal variability |
108 | ″ | schema:pagination | 527-546 |
109 | ″ | schema:productId | N3a2073015dcf43538565ea4f5ff3faef |
110 | ″ | ″ | Na8b8d8a08c6d4d3e985a72eaf3f4d73a |
111 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1021861148 |
112 | ″ | ″ | https://doi.org/10.1007/s00382-010-0977-x |
113 | ″ | schema:sdDatePublished | 2022-06-01T22:09 |
114 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
115 | ″ | schema:sdPublisher | N32200407292946498b7908b1c98b402c |
116 | ″ | schema:url | https://doi.org/10.1007/s00382-010-0977-x |
117 | ″ | sgo:license | sg:explorer/license/ |
118 | ″ | sgo:sdDataset | articles |
119 | ″ | rdf:type | schema:ScholarlyArticle |
120 | N032fac94942f4d628cd6c6830b937b61 | rdf:first | sg:person.014220627757.04 |
121 | ″ | rdf:rest | rdf:nil |
122 | N1ba5a60a783341b49ba0aaa5c0c41954 | rdf:first | Na69100f2c79e4a66a1af83eae9334702 |
123 | ″ | rdf:rest | N032fac94942f4d628cd6c6830b937b61 |
124 | N1dc82b3c2c2e4b7590770b557f4dad9e | schema:volumeNumber | 38 |
125 | ″ | rdf:type | schema:PublicationVolume |
126 | N25352b605a0340169d57988369dbb44d | schema:issueNumber | 3-4 |
127 | ″ | rdf:type | schema:PublicationIssue |
128 | N32200407292946498b7908b1c98b402c | schema:name | Springer Nature - SN SciGraph project |
129 | ″ | rdf:type | schema:Organization |
130 | N32cf686e037c416b9d7c3c246cf7ea09 | rdf:first | sg:person.0763364265.06 |
131 | ″ | rdf:rest | N1ba5a60a783341b49ba0aaa5c0c41954 |
132 | N3a2073015dcf43538565ea4f5ff3faef | schema:name | doi |
133 | ″ | schema:value | 10.1007/s00382-010-0977-x |
134 | ″ | rdf:type | schema:PropertyValue |
135 | N469159a6842647a89fb236ebe32142c7 | rdf:first | sg:person.0653551302.39 |
136 | ″ | rdf:rest | N32cf686e037c416b9d7c3c246cf7ea09 |
137 | Na69100f2c79e4a66a1af83eae9334702 | schema:affiliation | grid-institutes:grid.15040.30 |
138 | ″ | schema:familyName | Bourdette |
139 | ″ | schema:givenName | Vincent |
140 | ″ | rdf:type | schema:Person |
141 | Na8b8d8a08c6d4d3e985a72eaf3f4d73a | schema:name | dimensions_id |
142 | ″ | schema:value | pub.1021861148 |
143 | ″ | rdf:type | schema:PropertyValue |
144 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
145 | ″ | schema:name | Earth Sciences |
146 | ″ | rdf:type | schema:DefinedTerm |
147 | anzsrc-for:0401 | schema:inDefinedTermSet | anzsrc-for: |
148 | ″ | schema:name | Atmospheric Sciences |
149 | ″ | rdf:type | schema:DefinedTerm |
150 | anzsrc-for:0405 | schema:inDefinedTermSet | anzsrc-for: |
151 | ″ | schema:name | Oceanography |
152 | ″ | rdf:type | schema:DefinedTerm |
153 | sg:journal.1049631 | schema:issn | 0930-7575 |
154 | ″ | ″ | 1432-0894 |
155 | ″ | schema:name | Climate Dynamics |
156 | ″ | schema:publisher | Springer Nature |
157 | ″ | rdf:type | schema:Periodical |
158 | sg:person.014220627757.04 | schema:affiliation | grid-institutes:grid.57828.30 |
159 | ″ | schema:familyName | Teng |
160 | ″ | schema:givenName | Haiyan |
161 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014220627757.04 |
162 | ″ | rdf:type | schema:Person |
163 | sg:person.0653551302.39 | schema:affiliation | grid-institutes:grid.57828.30 |
164 | ″ | schema:familyName | Deser |
165 | ″ | schema:givenName | Clara |
166 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653551302.39 |
167 | ″ | rdf:type | schema:Person |
168 | sg:person.0763364265.06 | schema:affiliation | grid-institutes:grid.57828.30 |
169 | ″ | schema:familyName | Phillips |
170 | ″ | schema:givenName | Adam |
171 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763364265.06 |
172 | ″ | rdf:type | schema:Person |
173 | sg:pub.10.1007/bf00208987 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032849566 |
174 | ″ | ″ | https://doi.org/10.1007/bf00208987 |
175 | ″ | rdf:type | schema:CreativeWork |
176 | sg:pub.10.1007/s00382-008-0474-7 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049492449 |
177 | ″ | ″ | https://doi.org/10.1007/s00382-008-0474-7 |
178 | ″ | rdf:type | schema:CreativeWork |
179 | sg:pub.10.1007/s00382-010-0810-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1001203373 |
180 | ″ | ″ | https://doi.org/10.1007/s00382-010-0810-6 |
181 | ″ | rdf:type | schema:CreativeWork |
182 | sg:pub.10.1007/s003820050042 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1054515236 |
183 | ″ | ″ | https://doi.org/10.1007/s003820050042 |
184 | ″ | rdf:type | schema:CreativeWork |
185 | sg:pub.10.1007/s003820050135 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1030728378 |
186 | ″ | ″ | https://doi.org/10.1007/s003820050135 |
187 | ″ | rdf:type | schema:CreativeWork |
188 | sg:pub.10.1007/s003820050284 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1001545167 |
189 | ″ | ″ | https://doi.org/10.1007/s003820050284 |
190 | ″ | rdf:type | schema:CreativeWork |
191 | grid-institutes:grid.15040.30 | schema:alternateName | Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), Toulouse, France |
192 | ″ | schema:name | Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), Toulouse, France |
193 | ″ | ″ | Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA |
194 | ″ | rdf:type | schema:Organization |
195 | grid-institutes:grid.57828.30 | schema:alternateName | Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA |
196 | ″ | schema:name | Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA |
197 | ″ | rdf:type | schema:Organization |