Uncertainty in climate change projections: the role of internal variability View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12-31

AUTHORS

Clara Deser, Adam Phillips, Vincent Bourdette, Haiyan Teng

ABSTRACT

Uncertainty in future climate change presents a key challenge for adaptation planning. In this study, uncertainty arising from internal climate variability is investigated using a new 40-member ensemble conducted with the National Center for Atmospheric Research Community Climate System Model Version 3 (CCSM3) under the SRES A1B greenhouse gas and ozone recovery forcing scenarios during 2000–2060. The contribution of intrinsic atmospheric variability to the total uncertainty is further examined using a 10,000-year control integration of the atmospheric model component of CCSM3 under fixed boundary conditions. The global climate response is characterized in terms of air temperature, precipitation, and sea level pressure during winter and summer. The dominant source of uncertainty in the simulated climate response at middle and high latitudes is internal atmospheric variability associated with the annular modes of circulation variability. Coupled ocean-atmosphere variability plays a dominant role in the tropics, with attendant effects at higher latitudes via atmospheric teleconnections. Uncertainties in the forced response are generally larger for sea level pressure than precipitation, and smallest for air temperature. Accordingly, forced changes in air temperature can be detected earlier and with fewer ensemble members than those in atmospheric circulation and precipitation. Implications of the results for detection and attribution of observed climate change and for multi-model climate assessments are discussed. Internal variability is estimated to account for at least half of the inter-model spread in projected climate trends during 2005–2060 in the CMIP3 multi-model ensemble. More... »

PAGES

527-546

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-010-0977-x

DOI

http://dx.doi.org/10.1007/s00382-010-0977-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021861148


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.57828.30", 
          "name": [
            "Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deser", 
        "givenName": "Clara", 
        "id": "sg:person.0653551302.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653551302.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.57828.30", 
          "name": [
            "Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Phillips", 
        "givenName": "Adam", 
        "id": "sg:person.0763364265.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763364265.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre Europ\u00e9en de Recherche et de Formation Avanc\u00e9e en Calcul Scientifique (CERFACS), Toulouse, France", 
          "id": "http://www.grid.ac/institutes/grid.15040.30", 
          "name": [
            "Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA", 
            "Centre Europ\u00e9en de Recherche et de Formation Avanc\u00e9e en Calcul Scientifique (CERFACS), Toulouse, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bourdette", 
        "givenName": "Vincent", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.57828.30", 
          "name": [
            "Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Teng", 
        "givenName": "Haiyan", 
        "id": "sg:person.014220627757.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014220627757.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00208987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032849566", 
          "https://doi.org/10.1007/bf00208987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030728378", 
          "https://doi.org/10.1007/s003820050135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-008-0474-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049492449", 
          "https://doi.org/10.1007/s00382-008-0474-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-010-0810-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001203373", 
          "https://doi.org/10.1007/s00382-010-0810-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054515236", 
          "https://doi.org/10.1007/s003820050042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001545167", 
          "https://doi.org/10.1007/s003820050284"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12-31", 
    "datePublishedReg": "2010-12-31", 
    "description": "Uncertainty in future climate change presents a key challenge for adaptation planning. In this study, uncertainty arising from internal climate variability is investigated using a new 40-member ensemble conducted with the National Center for Atmospheric Research Community Climate System Model Version 3 (CCSM3) under the SRES A1B greenhouse gas and ozone recovery forcing scenarios during 2000\u20132060. The contribution of intrinsic atmospheric variability to the total uncertainty is further examined using a 10,000-year control integration of the atmospheric model component of CCSM3 under fixed boundary conditions. The global climate response is characterized in terms of air temperature, precipitation, and sea level pressure during winter and summer. The dominant source of uncertainty in the simulated climate response at middle and high latitudes is internal atmospheric variability associated with the annular modes of circulation variability. Coupled ocean-atmosphere variability plays a dominant role in the tropics, with attendant effects at higher latitudes via atmospheric teleconnections. Uncertainties in the forced response are generally larger for sea level pressure than precipitation, and smallest for air temperature. Accordingly, forced changes in air temperature can be detected earlier and with fewer ensemble members than those in atmospheric circulation and precipitation. Implications of the results for detection and attribution of observed climate change and for multi-model climate assessments are discussed. Internal variability is estimated to account for at least half of the inter-model spread in projected climate trends during 2005\u20132060 in the CMIP3 multi-model ensemble.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-010-0977-x", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "keywords": [
      "Community Climate System Model version 3", 
      "sea level pressure", 
      "air temperature", 
      "atmospheric variability", 
      "internal variability", 
      "level pressure", 
      "climate response", 
      "high latitudes", 
      "Atmospheric Research Community Climate System Model version 3", 
      "climate change", 
      "CMIP3 multi-model ensemble", 
      "internal climate variability", 
      "intrinsic atmospheric variability", 
      "year control integration", 
      "atmospheric model component", 
      "simulated climate response", 
      "internal atmospheric variability", 
      "ocean\u2013atmosphere variability", 
      "Model version 3", 
      "inter-model spread", 
      "global climate response", 
      "multi-model ensemble", 
      "climate change projections", 
      "observed climate change", 
      "future climate change", 
      "circulation variability", 
      "atmospheric teleconnections", 
      "Annular Mode", 
      "atmospheric circulation", 
      "climate variability", 
      "ozone recovery", 
      "change projections", 
      "climate trends", 
      "ensemble members", 
      "control integration", 
      "Climate Assessment", 
      "version 3", 
      "dominant source", 
      "National Center", 
      "greenhouse gas", 
      "adaptation planning", 
      "precipitation", 
      "variability", 
      "total uncertainty", 
      "model components", 
      "latitudes", 
      "dominant role", 
      "attendant effects", 
      "uncertainty", 
      "teleconnections", 
      "ensemble", 
      "tropics", 
      "winter", 
      "summer", 
      "circulation", 
      "boundary conditions", 
      "temperature", 
      "changes", 
      "trends", 
      "projections", 
      "source", 
      "gas", 
      "scenarios", 
      "attribution", 
      "contribution", 
      "pressure", 
      "implications", 
      "conditions", 
      "response", 
      "components", 
      "half", 
      "center", 
      "assessment", 
      "planning", 
      "spread", 
      "key challenges", 
      "role", 
      "mode", 
      "results", 
      "study", 
      "terms", 
      "integration", 
      "recovery", 
      "members", 
      "effect", 
      "challenges", 
      "detection"
    ], 
    "name": "Uncertainty in climate change projections: the role of internal variability", 
    "pagination": "527-546", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021861148"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-010-0977-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-010-0977-x", 
      "https://app.dimensions.ai/details/publication/pub.1021861148"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-010-0977-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0977-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0977-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0977-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0977-x'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      22 PREDICATES      119 URIs      104 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-010-0977-x schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0405
4 schema:author N469159a6842647a89fb236ebe32142c7
5 schema:citation sg:pub.10.1007/bf00208987
6 sg:pub.10.1007/s00382-008-0474-7
7 sg:pub.10.1007/s00382-010-0810-6
8 sg:pub.10.1007/s003820050042
9 sg:pub.10.1007/s003820050135
10 sg:pub.10.1007/s003820050284
11 schema:datePublished 2010-12-31
12 schema:datePublishedReg 2010-12-31
13 schema:description Uncertainty in future climate change presents a key challenge for adaptation planning. In this study, uncertainty arising from internal climate variability is investigated using a new 40-member ensemble conducted with the National Center for Atmospheric Research Community Climate System Model Version 3 (CCSM3) under the SRES A1B greenhouse gas and ozone recovery forcing scenarios during 2000–2060. The contribution of intrinsic atmospheric variability to the total uncertainty is further examined using a 10,000-year control integration of the atmospheric model component of CCSM3 under fixed boundary conditions. The global climate response is characterized in terms of air temperature, precipitation, and sea level pressure during winter and summer. The dominant source of uncertainty in the simulated climate response at middle and high latitudes is internal atmospheric variability associated with the annular modes of circulation variability. Coupled ocean-atmosphere variability plays a dominant role in the tropics, with attendant effects at higher latitudes via atmospheric teleconnections. Uncertainties in the forced response are generally larger for sea level pressure than precipitation, and smallest for air temperature. Accordingly, forced changes in air temperature can be detected earlier and with fewer ensemble members than those in atmospheric circulation and precipitation. Implications of the results for detection and attribution of observed climate change and for multi-model climate assessments are discussed. Internal variability is estimated to account for at least half of the inter-model spread in projected climate trends during 2005–2060 in the CMIP3 multi-model ensemble.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N1dc82b3c2c2e4b7590770b557f4dad9e
18 N25352b605a0340169d57988369dbb44d
19 sg:journal.1049631
20 schema:keywords Annular Mode
21 Atmospheric Research Community Climate System Model version 3
22 CMIP3 multi-model ensemble
23 Climate Assessment
24 Community Climate System Model version 3
25 Model version 3
26 National Center
27 adaptation planning
28 air temperature
29 assessment
30 atmospheric circulation
31 atmospheric model component
32 atmospheric teleconnections
33 atmospheric variability
34 attendant effects
35 attribution
36 boundary conditions
37 center
38 challenges
39 change projections
40 changes
41 circulation
42 circulation variability
43 climate change
44 climate change projections
45 climate response
46 climate trends
47 climate variability
48 components
49 conditions
50 contribution
51 control integration
52 detection
53 dominant role
54 dominant source
55 effect
56 ensemble
57 ensemble members
58 future climate change
59 gas
60 global climate response
61 greenhouse gas
62 half
63 high latitudes
64 implications
65 integration
66 inter-model spread
67 internal atmospheric variability
68 internal climate variability
69 internal variability
70 intrinsic atmospheric variability
71 key challenges
72 latitudes
73 level pressure
74 members
75 mode
76 model components
77 multi-model ensemble
78 observed climate change
79 ocean–atmosphere variability
80 ozone recovery
81 planning
82 precipitation
83 pressure
84 projections
85 recovery
86 response
87 results
88 role
89 scenarios
90 sea level pressure
91 simulated climate response
92 source
93 spread
94 study
95 summer
96 teleconnections
97 temperature
98 terms
99 total uncertainty
100 trends
101 tropics
102 uncertainty
103 variability
104 version 3
105 winter
106 year control integration
107 schema:name Uncertainty in climate change projections: the role of internal variability
108 schema:pagination 527-546
109 schema:productId N3a2073015dcf43538565ea4f5ff3faef
110 Na8b8d8a08c6d4d3e985a72eaf3f4d73a
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021861148
112 https://doi.org/10.1007/s00382-010-0977-x
113 schema:sdDatePublished 2022-06-01T22:09
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher N32200407292946498b7908b1c98b402c
116 schema:url https://doi.org/10.1007/s00382-010-0977-x
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N032fac94942f4d628cd6c6830b937b61 rdf:first sg:person.014220627757.04
121 rdf:rest rdf:nil
122 N1ba5a60a783341b49ba0aaa5c0c41954 rdf:first Na69100f2c79e4a66a1af83eae9334702
123 rdf:rest N032fac94942f4d628cd6c6830b937b61
124 N1dc82b3c2c2e4b7590770b557f4dad9e schema:volumeNumber 38
125 rdf:type schema:PublicationVolume
126 N25352b605a0340169d57988369dbb44d schema:issueNumber 3-4
127 rdf:type schema:PublicationIssue
128 N32200407292946498b7908b1c98b402c schema:name Springer Nature - SN SciGraph project
129 rdf:type schema:Organization
130 N32cf686e037c416b9d7c3c246cf7ea09 rdf:first sg:person.0763364265.06
131 rdf:rest N1ba5a60a783341b49ba0aaa5c0c41954
132 N3a2073015dcf43538565ea4f5ff3faef schema:name doi
133 schema:value 10.1007/s00382-010-0977-x
134 rdf:type schema:PropertyValue
135 N469159a6842647a89fb236ebe32142c7 rdf:first sg:person.0653551302.39
136 rdf:rest N32cf686e037c416b9d7c3c246cf7ea09
137 Na69100f2c79e4a66a1af83eae9334702 schema:affiliation grid-institutes:grid.15040.30
138 schema:familyName Bourdette
139 schema:givenName Vincent
140 rdf:type schema:Person
141 Na8b8d8a08c6d4d3e985a72eaf3f4d73a schema:name dimensions_id
142 schema:value pub.1021861148
143 rdf:type schema:PropertyValue
144 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
145 schema:name Earth Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
148 schema:name Atmospheric Sciences
149 rdf:type schema:DefinedTerm
150 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
151 schema:name Oceanography
152 rdf:type schema:DefinedTerm
153 sg:journal.1049631 schema:issn 0930-7575
154 1432-0894
155 schema:name Climate Dynamics
156 schema:publisher Springer Nature
157 rdf:type schema:Periodical
158 sg:person.014220627757.04 schema:affiliation grid-institutes:grid.57828.30
159 schema:familyName Teng
160 schema:givenName Haiyan
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014220627757.04
162 rdf:type schema:Person
163 sg:person.0653551302.39 schema:affiliation grid-institutes:grid.57828.30
164 schema:familyName Deser
165 schema:givenName Clara
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653551302.39
167 rdf:type schema:Person
168 sg:person.0763364265.06 schema:affiliation grid-institutes:grid.57828.30
169 schema:familyName Phillips
170 schema:givenName Adam
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763364265.06
172 rdf:type schema:Person
173 sg:pub.10.1007/bf00208987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032849566
174 https://doi.org/10.1007/bf00208987
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s00382-008-0474-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049492449
177 https://doi.org/10.1007/s00382-008-0474-7
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s00382-010-0810-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001203373
180 https://doi.org/10.1007/s00382-010-0810-6
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/s003820050042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054515236
183 https://doi.org/10.1007/s003820050042
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s003820050135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030728378
186 https://doi.org/10.1007/s003820050135
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/s003820050284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001545167
189 https://doi.org/10.1007/s003820050284
190 rdf:type schema:CreativeWork
191 grid-institutes:grid.15040.30 schema:alternateName Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), Toulouse, France
192 schema:name Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), Toulouse, France
193 Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA
194 rdf:type schema:Organization
195 grid-institutes:grid.57828.30 schema:alternateName Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA
196 schema:name Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO, USA
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...