Soil moisture effects on seasonal temperature and precipitation forecast scores in Europe View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12-08

AUTHORS

Bart van den Hurk, Francisco Doblas-Reyes, Gianpaolo Balsamo, Randal D. Koster, Sonia I. Seneviratne, Helio Camargo

ABSTRACT

The Second Global Land Atmosphere Coupling Experiment (GLACE2) is designed to explore the improvement of forecast skill of summertime temperature and precipitation up to 8 weeks ahead by using realistic soil moisture initialization. For the European continent, we show in this study that for temperature the skill does indeed increase up to 6 weeks, but areas with (statistically significant) lower skill also exist at longer lead times. The skill improvement is smaller than shown earlier for the US, partly because of a lower potential predictability of the European climate at seasonal time scales. Selection of extreme soil moisture conditions or a subset of models with similar initial soil moisture conditions does improve the forecast skill, and sporadic positive effects are also demonstrated for precipitation. Using realistic initial soil moisture data increases the interannual variability of temperature compared to the control simulations in the South-Central European area at longer lead times. This leads to better temperature forecasts in a remote area in Western Europe. However, the covered range of forecast dates (1986–1995) is too short to isolate a clear physical mechanism for this remote correlation. More... »

PAGES

349-362

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-010-0956-2

DOI

http://dx.doi.org/10.1007/s00382-010-0956-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015241299


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Royal Netherlands Meteorological Institute, KNMI, PO Box 201, 3730, AE De Bilt, Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "Royal Netherlands Meteorological Institute, KNMI, PO Box 201, 3730, AE De Bilt, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van den Hurk", 
        "givenName": "Bart", 
        "id": "sg:person.010707714545.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707714545.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-range Weather Forecasts (ECMWF), Shinfield Park, RG2 9AX, Reading, UK", 
          "id": "http://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "Catalan Institute of Climate Sciences (IC3), Doctor Trueta 203, 08005, Barcelona, Spain", 
            "European Centre for Medium-range Weather Forecasts (ECMWF), Shinfield Park, RG2 9AX, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doblas-Reyes", 
        "givenName": "Francisco", 
        "id": "sg:person.01320266251.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320266251.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-range Weather Forecasts (ECMWF), Shinfield Park, RG2 9AX, Reading, UK", 
          "id": "http://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "European Centre for Medium-range Weather Forecasts (ECMWF), Shinfield Park, RG2 9AX, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balsamo", 
        "givenName": "Gianpaolo", 
        "id": "sg:person.015134253735.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015134253735.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Global Modeling and Assimilation Office, NASA/Goddard Space Flight Center, Greenbelt, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.133275.1", 
          "name": [
            "Global Modeling and Assimilation Office, NASA/Goddard Space Flight Center, Greenbelt, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koster", 
        "givenName": "Randal D.", 
        "id": "sg:person.010665574606.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010665574606.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seneviratne", 
        "givenName": "Sonia I.", 
        "id": "sg:person.011052545437.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011052545437.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Netherlands Meteorological Institute, KNMI, PO Box 201, 3730, AE De Bilt, Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "Royal Netherlands Meteorological Institute, KNMI, PO Box 201, 3730, AE De Bilt, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Camargo", 
        "givenName": "Helio", 
        "id": "sg:person.011404775361.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011404775361.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature05095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043618867", 
          "https://doi.org/10.1038/nature05095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-008-0508-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014024541", 
          "https://doi.org/10.1007/s00382-008-0508-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12-08", 
    "datePublishedReg": "2010-12-08", 
    "description": "The Second Global Land Atmosphere Coupling Experiment (GLACE2) is designed to explore the improvement of forecast skill of summertime temperature and precipitation up to 8\u00a0weeks ahead by using realistic soil moisture initialization. For the European continent, we show in this study that for temperature the skill does indeed increase up to 6 weeks, but areas with (statistically significant) lower skill also exist at longer lead times. The skill improvement is smaller than shown earlier for the US, partly because of a lower potential predictability of the European climate at seasonal time scales. Selection of extreme soil moisture conditions or a subset of models with similar initial soil moisture conditions does improve the forecast skill, and sporadic positive effects are also demonstrated for precipitation. Using realistic initial soil moisture data increases the interannual variability of temperature compared to the control simulations in the South-Central European area at longer lead times. This leads to better temperature forecasts in a remote area in Western Europe. However, the covered range of forecast dates (1986\u20131995) is too short to isolate a clear physical mechanism for this remote correlation.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-010-0956-2", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "38"
      }
    ], 
    "keywords": [
      "soil moisture conditions", 
      "forecast skill", 
      "Global Land\u2013Atmosphere Coupling Experiment", 
      "realistic soil moisture initialization", 
      "initial soil moisture conditions", 
      "moisture conditions", 
      "soil moisture initialization", 
      "low potential predictability", 
      "seasonal time scales", 
      "extreme soil moisture conditions", 
      "soil moisture data", 
      "subset of models", 
      "soil moisture effects", 
      "moisture initialization", 
      "potential predictability", 
      "interannual variability", 
      "moisture data", 
      "forecast scores", 
      "temperature forecasts", 
      "forecast date", 
      "summertime temperatures", 
      "European climate", 
      "control simulation", 
      "remote correlation", 
      "clear physical mechanism", 
      "seasonal temperature", 
      "low skill", 
      "European continent", 
      "time scales", 
      "coupling experiments", 
      "European area", 
      "precipitation", 
      "moisture effects", 
      "physical mechanisms", 
      "Western Europe", 
      "skill improvement", 
      "remote areas", 
      "area", 
      "climate", 
      "continent", 
      "forecasts", 
      "temperature", 
      "variability", 
      "Europe", 
      "predictability", 
      "initialization", 
      "scale", 
      "conditions", 
      "date", 
      "simulations", 
      "data", 
      "time", 
      "correlation", 
      "range", 
      "model", 
      "skills", 
      "uses", 
      "experiments", 
      "effect", 
      "study", 
      "mechanism", 
      "improvement", 
      "positive effect", 
      "subset", 
      "selection", 
      "weeks", 
      "scores"
    ], 
    "name": "Soil moisture effects on seasonal temperature and precipitation forecast scores in Europe", 
    "pagination": "349-362", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015241299"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-010-0956-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-010-0956-2", 
      "https://app.dimensions.ai/details/publication/pub.1015241299"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-010-0956-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0956-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0956-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0956-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0956-2'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      93 URIs      83 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-010-0956-2 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N1dcd909cfe0c45569ff516900a02c986
4 schema:citation sg:pub.10.1007/s00382-008-0508-1
5 sg:pub.10.1038/nature05095
6 schema:datePublished 2010-12-08
7 schema:datePublishedReg 2010-12-08
8 schema:description The Second Global Land Atmosphere Coupling Experiment (GLACE2) is designed to explore the improvement of forecast skill of summertime temperature and precipitation up to 8 weeks ahead by using realistic soil moisture initialization. For the European continent, we show in this study that for temperature the skill does indeed increase up to 6 weeks, but areas with (statistically significant) lower skill also exist at longer lead times. The skill improvement is smaller than shown earlier for the US, partly because of a lower potential predictability of the European climate at seasonal time scales. Selection of extreme soil moisture conditions or a subset of models with similar initial soil moisture conditions does improve the forecast skill, and sporadic positive effects are also demonstrated for precipitation. Using realistic initial soil moisture data increases the interannual variability of temperature compared to the control simulations in the South-Central European area at longer lead times. This leads to better temperature forecasts in a remote area in Western Europe. However, the covered range of forecast dates (1986–1995) is too short to isolate a clear physical mechanism for this remote correlation.
9 schema:genre article
10 schema:isAccessibleForFree true
11 schema:isPartOf N4b8c6ff366414edfae08a234b73a03f2
12 Nf3d8e6a4d9dc4fdea30e3de1557c81ec
13 sg:journal.1049631
14 schema:keywords Europe
15 European area
16 European climate
17 European continent
18 Global Land–Atmosphere Coupling Experiment
19 Western Europe
20 area
21 clear physical mechanism
22 climate
23 conditions
24 continent
25 control simulation
26 correlation
27 coupling experiments
28 data
29 date
30 effect
31 experiments
32 extreme soil moisture conditions
33 forecast date
34 forecast scores
35 forecast skill
36 forecasts
37 improvement
38 initial soil moisture conditions
39 initialization
40 interannual variability
41 low potential predictability
42 low skill
43 mechanism
44 model
45 moisture conditions
46 moisture data
47 moisture effects
48 moisture initialization
49 physical mechanisms
50 positive effect
51 potential predictability
52 precipitation
53 predictability
54 range
55 realistic soil moisture initialization
56 remote areas
57 remote correlation
58 scale
59 scores
60 seasonal temperature
61 seasonal time scales
62 selection
63 simulations
64 skill improvement
65 skills
66 soil moisture conditions
67 soil moisture data
68 soil moisture effects
69 soil moisture initialization
70 study
71 subset
72 subset of models
73 summertime temperatures
74 temperature
75 temperature forecasts
76 time
77 time scales
78 uses
79 variability
80 weeks
81 schema:name Soil moisture effects on seasonal temperature and precipitation forecast scores in Europe
82 schema:pagination 349-362
83 schema:productId N9d63e455dd68413fbe3fd59a26318eff
84 Nc93fc83338be408cba6cc6c8f337fc72
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015241299
86 https://doi.org/10.1007/s00382-010-0956-2
87 schema:sdDatePublished 2022-10-01T06:36
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher Nc1e036c4abdf4092841e9e940fb90aa2
90 schema:url https://doi.org/10.1007/s00382-010-0956-2
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N1dcd909cfe0c45569ff516900a02c986 rdf:first sg:person.010707714545.84
95 rdf:rest N84c6305e616f423da6d29f1a2fbe428e
96 N4b8c6ff366414edfae08a234b73a03f2 schema:volumeNumber 38
97 rdf:type schema:PublicationVolume
98 N56814e8f2de948c693e67b8770b93e03 rdf:first sg:person.015134253735.58
99 rdf:rest N9706befcac024d7b9ca98f1f7e529f60
100 N84c6305e616f423da6d29f1a2fbe428e rdf:first sg:person.01320266251.39
101 rdf:rest N56814e8f2de948c693e67b8770b93e03
102 N9706befcac024d7b9ca98f1f7e529f60 rdf:first sg:person.010665574606.62
103 rdf:rest N9a1247853c1841e080baf971be3e3015
104 N9a1247853c1841e080baf971be3e3015 rdf:first sg:person.011052545437.05
105 rdf:rest Nc4940775625c412d8bf140155757924c
106 N9d63e455dd68413fbe3fd59a26318eff schema:name doi
107 schema:value 10.1007/s00382-010-0956-2
108 rdf:type schema:PropertyValue
109 Nc1e036c4abdf4092841e9e940fb90aa2 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Nc4940775625c412d8bf140155757924c rdf:first sg:person.011404775361.00
112 rdf:rest rdf:nil
113 Nc93fc83338be408cba6cc6c8f337fc72 schema:name dimensions_id
114 schema:value pub.1015241299
115 rdf:type schema:PropertyValue
116 Nf3d8e6a4d9dc4fdea30e3de1557c81ec schema:issueNumber 1-2
117 rdf:type schema:PublicationIssue
118 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
119 schema:name Earth Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
122 schema:name Physical Geography and Environmental Geoscience
123 rdf:type schema:DefinedTerm
124 sg:journal.1049631 schema:issn 0930-7575
125 1432-0894
126 schema:name Climate Dynamics
127 schema:publisher Springer Nature
128 rdf:type schema:Periodical
129 sg:person.010665574606.62 schema:affiliation grid-institutes:grid.133275.1
130 schema:familyName Koster
131 schema:givenName Randal D.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010665574606.62
133 rdf:type schema:Person
134 sg:person.010707714545.84 schema:affiliation grid-institutes:grid.8653.8
135 schema:familyName van den Hurk
136 schema:givenName Bart
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707714545.84
138 rdf:type schema:Person
139 sg:person.011052545437.05 schema:affiliation grid-institutes:grid.5801.c
140 schema:familyName Seneviratne
141 schema:givenName Sonia I.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011052545437.05
143 rdf:type schema:Person
144 sg:person.011404775361.00 schema:affiliation grid-institutes:grid.8653.8
145 schema:familyName Camargo
146 schema:givenName Helio
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011404775361.00
148 rdf:type schema:Person
149 sg:person.01320266251.39 schema:affiliation grid-institutes:grid.42781.38
150 schema:familyName Doblas-Reyes
151 schema:givenName Francisco
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320266251.39
153 rdf:type schema:Person
154 sg:person.015134253735.58 schema:affiliation grid-institutes:grid.42781.38
155 schema:familyName Balsamo
156 schema:givenName Gianpaolo
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015134253735.58
158 rdf:type schema:Person
159 sg:pub.10.1007/s00382-008-0508-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014024541
160 https://doi.org/10.1007/s00382-008-0508-1
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nature05095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043618867
163 https://doi.org/10.1038/nature05095
164 rdf:type schema:CreativeWork
165 grid-institutes:grid.133275.1 schema:alternateName Global Modeling and Assimilation Office, NASA/Goddard Space Flight Center, Greenbelt, MD, USA
166 schema:name Global Modeling and Assimilation Office, NASA/Goddard Space Flight Center, Greenbelt, MD, USA
167 rdf:type schema:Organization
168 grid-institutes:grid.42781.38 schema:alternateName European Centre for Medium-range Weather Forecasts (ECMWF), Shinfield Park, RG2 9AX, Reading, UK
169 schema:name Catalan Institute of Climate Sciences (IC3), Doctor Trueta 203, 08005, Barcelona, Spain
170 European Centre for Medium-range Weather Forecasts (ECMWF), Shinfield Park, RG2 9AX, Reading, UK
171 rdf:type schema:Organization
172 grid-institutes:grid.5801.c schema:alternateName Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
173 schema:name Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
174 rdf:type schema:Organization
175 grid-institutes:grid.8653.8 schema:alternateName Royal Netherlands Meteorological Institute, KNMI, PO Box 201, 3730, AE De Bilt, Netherlands
176 schema:name Royal Netherlands Meteorological Institute, KNMI, PO Box 201, 3730, AE De Bilt, Netherlands
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...