ECMWF seasonal forecast system 3 and its prediction of sea surface temperature View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-08

AUTHORS

Timothy N. Stockdale, David L. T. Anderson, Magdalena A. Balmaseda, Francisco Doblas-Reyes, Laura Ferranti, Kristian Mogensen, Timothy N. Palmer, Franco Molteni, Frederic Vitart

ABSTRACT

The latest operational version of the ECMWF seasonal forecasting system is described. It shows noticeably improved skill for sea surface temperature (SST) prediction compared with previous versions, particularly with respect to El Nino related variability. Substantial skill is shown for lead times up to 1 year, although at this range the spread in the ensemble forecast implies a loss of predictability large enough to account for most of the forecast error variance, suggesting only moderate scope for improving long range El Nino forecasts. At shorter ranges, particularly 3–6 months, skill is still substantially below the model-estimated predictability limit. SST forecast skill is higher for more recent periods than earlier ones. Analysis shows that although various factors can affect scores in particular periods, the improvement from 1994 onwards seems to be robust, and is most plausibly due to improvements in the observing system made at that time. The improvement in forecast skill is most evident for 3-month forecasts starting in February, where predictions of NINO3.4 SST from 1994 to present have been almost without fault. It is argued that in situations where the impact of model error is small, the value of improved observational data can be seen most clearly. Significant skill is also shown in the equatorial Indian Ocean, although predictive skill in parts of the tropical Atlantic are relatively poor. SST forecast errors can be especially high in the Southern Ocean. More... »

PAGES

455-471

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-010-0947-3

DOI

http://dx.doi.org/10.1007/s00382-010-0947-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020024918


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "ECMWF, Shinfield Park, RG2 9AX, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stockdale", 
        "givenName": "Timothy N.", 
        "id": "sg:person.012677327027.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012677327027.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "ECMWF, Shinfield Park, RG2 9AX, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anderson", 
        "givenName": "David L. T.", 
        "id": "sg:person.015067650427.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015067650427.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "ECMWF, Shinfield Park, RG2 9AX, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balmaseda", 
        "givenName": "Magdalena A.", 
        "id": "sg:person.010507005427.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010507005427.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Catal\u00e0 de Ci\u00e8ncies del Clima", 
          "id": "https://www.grid.ac/institutes/grid.424730.6", 
          "name": [
            "ECMWF, Shinfield Park, RG2 9AX, Reading, UK", 
            "Institut Catala de Ciencies del Clima (IC3), Doctor Trueta 203, 08005, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doblas-Reyes", 
        "givenName": "Francisco", 
        "id": "sg:person.01320266251.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320266251.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "ECMWF, Shinfield Park, RG2 9AX, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ferranti", 
        "givenName": "Laura", 
        "id": "sg:person.011637333431.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011637333431.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "ECMWF, Shinfield Park, RG2 9AX, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mogensen", 
        "givenName": "Kristian", 
        "id": "sg:person.013261633161.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013261633161.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "ECMWF, Shinfield Park, RG2 9AX, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Palmer", 
        "givenName": "Timothy N.", 
        "id": "sg:person.013424636501.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013424636501.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "ECMWF, Shinfield Park, RG2 9AX, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Molteni", 
        "givenName": "Franco", 
        "id": "sg:person.014221555342.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014221555342.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "ECMWF, Shinfield Park, RG2 9AX, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vitart", 
        "givenName": "Frederic", 
        "id": "sg:person.016103603413.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016103603413.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/2005gl025061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000003738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005gl025061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000003738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-008-0460-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003278820", 
          "https://doi.org/10.1007/s00382-008-0460-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-008-0460-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003278820", 
          "https://doi.org/10.1007/s00382-008-0460-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3812.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005354947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009gl040896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006455197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009gl040896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006455197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2007jcli1412.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010352205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-008-0397-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013019248", 
          "https://doi.org/10.1007/s00382-008-0397-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-008-0397-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013019248", 
          "https://doi.org/10.1007/s00382-008-0397-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/32861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014986067", 
          "https://doi.org/10.1038/32861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/32861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014986067", 
          "https://doi.org/10.1038/32861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3526.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017051443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3526.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017051443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2003gl016872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018487531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/321827a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020091934", 
          "https://doi.org/10.1038/321827a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2002jd002670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020320930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2009bams2752.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021621452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2002)015<1609:aiisas>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025644996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/mwr-2863.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026024388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3947.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028838714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/43854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031405299", 
          "https://doi.org/10.1038/43854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/43854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031405299", 
          "https://doi.org/10.1038/43854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008gl035561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038845832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041058040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041058040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.49712556006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042901176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.49712556006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042901176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-89-4-459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043541285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/43848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043900608", 
          "https://doi.org/10.1038/43848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/43848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043900608", 
          "https://doi.org/10.1038/43848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008mwr2433.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044673457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3420.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045376892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3420.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045376892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046368336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1995)008<0336:tsciai>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047275102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2007jcli1776.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049882355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2009waf2222236.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050608861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1997)125<0809:coafit>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053618756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-85-6-853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063454334"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-08", 
    "datePublishedReg": "2011-08-01", 
    "description": "The latest operational version of the ECMWF seasonal forecasting system is described. It shows noticeably improved skill for sea surface temperature (SST) prediction compared with previous versions, particularly with respect to El Nino related variability. Substantial skill is shown for lead times up to 1 year, although at this range the spread in the ensemble forecast implies a loss of predictability large enough to account for most of the forecast error variance, suggesting only moderate scope for improving long range El Nino forecasts. At shorter ranges, particularly 3\u20136 months, skill is still substantially below the model-estimated predictability limit. SST forecast skill is higher for more recent periods than earlier ones. Analysis shows that although various factors can affect scores in particular periods, the improvement from 1994 onwards seems to be robust, and is most plausibly due to improvements in the observing system made at that time. The improvement in forecast skill is most evident for 3-month forecasts starting in February, where predictions of NINO3.4 SST from 1994 to present have been almost without fault. It is argued that in situations where the impact of model error is small, the value of improved observational data can be seen most clearly. Significant skill is also shown in the equatorial Indian Ocean, although predictive skill in parts of the tropical Atlantic are relatively poor. SST forecast errors can be especially high in the Southern Ocean.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00382-010-0947-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "name": "ECMWF seasonal forecast system 3 and its prediction of sea surface temperature", 
    "pagination": "455-471", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5f692225824c09d54a0c2878da8cd15656c1e239bdf97e9160f0bb8a52895a2b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-010-0947-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020024918"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-010-0947-3", 
      "https://app.dimensions.ai/details/publication/pub.1020024918"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000481.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00382-010-0947-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0947-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0947-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0947-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0947-3'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-010-0947-3 schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author Nb0de93f96ee04c9d9a168f43003f7565
4 schema:citation sg:pub.10.1007/s00382-008-0397-3
5 sg:pub.10.1007/s00382-008-0460-0
6 sg:pub.10.1038/321827a0
7 sg:pub.10.1038/32861
8 sg:pub.10.1038/43848
9 sg:pub.10.1038/43854
10 https://doi.org/10.1002/qj.12
11 https://doi.org/10.1002/qj.49712556006
12 https://doi.org/10.1002/qj.661
13 https://doi.org/10.1029/2002jd002670
14 https://doi.org/10.1029/2003gl016872
15 https://doi.org/10.1029/2005gl025061
16 https://doi.org/10.1029/2008gl035561
17 https://doi.org/10.1029/2009gl040896
18 https://doi.org/10.1175/1520-0442(1995)008<0336:tsciai>2.0.co;2
19 https://doi.org/10.1175/1520-0442(2002)015<1609:aiisas>2.0.co;2
20 https://doi.org/10.1175/1520-0493(1997)125<0809:coafit>2.0.co;2
21 https://doi.org/10.1175/2007jcli1412.1
22 https://doi.org/10.1175/2007jcli1776.1
23 https://doi.org/10.1175/2008mwr2433.1
24 https://doi.org/10.1175/2009bams2752.1
25 https://doi.org/10.1175/2009waf2222236.1
26 https://doi.org/10.1175/bams-85-6-853
27 https://doi.org/10.1175/bams-89-4-459
28 https://doi.org/10.1175/jcli3420.1
29 https://doi.org/10.1175/jcli3526.1
30 https://doi.org/10.1175/jcli3812.1
31 https://doi.org/10.1175/jcli3947.1
32 https://doi.org/10.1175/mwr-2863.1
33 schema:datePublished 2011-08
34 schema:datePublishedReg 2011-08-01
35 schema:description The latest operational version of the ECMWF seasonal forecasting system is described. It shows noticeably improved skill for sea surface temperature (SST) prediction compared with previous versions, particularly with respect to El Nino related variability. Substantial skill is shown for lead times up to 1 year, although at this range the spread in the ensemble forecast implies a loss of predictability large enough to account for most of the forecast error variance, suggesting only moderate scope for improving long range El Nino forecasts. At shorter ranges, particularly 3–6 months, skill is still substantially below the model-estimated predictability limit. SST forecast skill is higher for more recent periods than earlier ones. Analysis shows that although various factors can affect scores in particular periods, the improvement from 1994 onwards seems to be robust, and is most plausibly due to improvements in the observing system made at that time. The improvement in forecast skill is most evident for 3-month forecasts starting in February, where predictions of NINO3.4 SST from 1994 to present have been almost without fault. It is argued that in situations where the impact of model error is small, the value of improved observational data can be seen most clearly. Significant skill is also shown in the equatorial Indian Ocean, although predictive skill in parts of the tropical Atlantic are relatively poor. SST forecast errors can be especially high in the Southern Ocean.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N529f6f343bdd44968a83d64d69bf1164
40 N90f4a086ae94475890a81421f67f2936
41 sg:journal.1049631
42 schema:name ECMWF seasonal forecast system 3 and its prediction of sea surface temperature
43 schema:pagination 455-471
44 schema:productId N368f83d5a9294033be31a0e318fcc6c6
45 N764c3579acd04611987b1a15481157c2
46 Na24178c5d6a9457985f31bf87911ae9d
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020024918
48 https://doi.org/10.1007/s00382-010-0947-3
49 schema:sdDatePublished 2019-04-10T15:43
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N4625d23390f04fe695ca627f76ccf745
52 schema:url http://link.springer.com/10.1007/s00382-010-0947-3
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N0a4eff4cf6fc408b86cff0fa2ec648e7 rdf:first sg:person.011637333431.53
57 rdf:rest Nc6ba5061e40b4bb493aa7330da556d5c
58 N340cde51887d4a638807e8ea3530201a rdf:first sg:person.010507005427.12
59 rdf:rest Nf5ebe6c3adac44c4a2af277887223503
60 N368f83d5a9294033be31a0e318fcc6c6 schema:name doi
61 schema:value 10.1007/s00382-010-0947-3
62 rdf:type schema:PropertyValue
63 N4070616280444e76bd4be36a6403a3e7 rdf:first sg:person.016103603413.15
64 rdf:rest rdf:nil
65 N4625d23390f04fe695ca627f76ccf745 schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 N529f6f343bdd44968a83d64d69bf1164 schema:issueNumber 3-4
68 rdf:type schema:PublicationIssue
69 N6be4ca44cb5b4437883675d342cc9b89 rdf:first sg:person.015067650427.67
70 rdf:rest N340cde51887d4a638807e8ea3530201a
71 N764c3579acd04611987b1a15481157c2 schema:name readcube_id
72 schema:value 5f692225824c09d54a0c2878da8cd15656c1e239bdf97e9160f0bb8a52895a2b
73 rdf:type schema:PropertyValue
74 N90f4a086ae94475890a81421f67f2936 schema:volumeNumber 37
75 rdf:type schema:PublicationVolume
76 Na24178c5d6a9457985f31bf87911ae9d schema:name dimensions_id
77 schema:value pub.1020024918
78 rdf:type schema:PropertyValue
79 Na4d2fea5dd754793b400a7adf971e27b rdf:first sg:person.013424636501.12
80 rdf:rest Ndb1d40a267244c77920bac7bbab8466a
81 Nb0de93f96ee04c9d9a168f43003f7565 rdf:first sg:person.012677327027.74
82 rdf:rest N6be4ca44cb5b4437883675d342cc9b89
83 Nc6ba5061e40b4bb493aa7330da556d5c rdf:first sg:person.013261633161.53
84 rdf:rest Na4d2fea5dd754793b400a7adf971e27b
85 Ndb1d40a267244c77920bac7bbab8466a rdf:first sg:person.014221555342.40
86 rdf:rest N4070616280444e76bd4be36a6403a3e7
87 Nf5ebe6c3adac44c4a2af277887223503 rdf:first sg:person.01320266251.39
88 rdf:rest N0a4eff4cf6fc408b86cff0fa2ec648e7
89 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
90 schema:name Earth Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
93 schema:name Oceanography
94 rdf:type schema:DefinedTerm
95 sg:journal.1049631 schema:issn 0930-7575
96 1432-0894
97 schema:name Climate Dynamics
98 rdf:type schema:Periodical
99 sg:person.010507005427.12 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
100 schema:familyName Balmaseda
101 schema:givenName Magdalena A.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010507005427.12
103 rdf:type schema:Person
104 sg:person.011637333431.53 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
105 schema:familyName Ferranti
106 schema:givenName Laura
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011637333431.53
108 rdf:type schema:Person
109 sg:person.012677327027.74 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
110 schema:familyName Stockdale
111 schema:givenName Timothy N.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012677327027.74
113 rdf:type schema:Person
114 sg:person.01320266251.39 schema:affiliation https://www.grid.ac/institutes/grid.424730.6
115 schema:familyName Doblas-Reyes
116 schema:givenName Francisco
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320266251.39
118 rdf:type schema:Person
119 sg:person.013261633161.53 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
120 schema:familyName Mogensen
121 schema:givenName Kristian
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013261633161.53
123 rdf:type schema:Person
124 sg:person.013424636501.12 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
125 schema:familyName Palmer
126 schema:givenName Timothy N.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013424636501.12
128 rdf:type schema:Person
129 sg:person.014221555342.40 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
130 schema:familyName Molteni
131 schema:givenName Franco
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014221555342.40
133 rdf:type schema:Person
134 sg:person.015067650427.67 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
135 schema:familyName Anderson
136 schema:givenName David L. T.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015067650427.67
138 rdf:type schema:Person
139 sg:person.016103603413.15 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
140 schema:familyName Vitart
141 schema:givenName Frederic
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016103603413.15
143 rdf:type schema:Person
144 sg:pub.10.1007/s00382-008-0397-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013019248
145 https://doi.org/10.1007/s00382-008-0397-3
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s00382-008-0460-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003278820
148 https://doi.org/10.1007/s00382-008-0460-0
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/321827a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020091934
151 https://doi.org/10.1038/321827a0
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/32861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014986067
154 https://doi.org/10.1038/32861
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/43848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043900608
157 https://doi.org/10.1038/43848
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/43854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031405299
160 https://doi.org/10.1038/43854
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/qj.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046368336
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/qj.49712556006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042901176
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/qj.661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041058040
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1029/2002jd002670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020320930
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1029/2003gl016872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018487531
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1029/2005gl025061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000003738
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1029/2008gl035561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038845832
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1029/2009gl040896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006455197
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1175/1520-0442(1995)008<0336:tsciai>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047275102
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1175/1520-0442(2002)015<1609:aiisas>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025644996
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1175/1520-0493(1997)125<0809:coafit>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053618756
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1175/2007jcli1412.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010352205
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1175/2007jcli1776.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049882355
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1175/2008mwr2433.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044673457
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1175/2009bams2752.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021621452
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1175/2009waf2222236.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050608861
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1175/bams-85-6-853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063454334
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1175/bams-89-4-459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043541285
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1175/jcli3420.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045376892
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1175/jcli3526.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017051443
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1175/jcli3812.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005354947
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1175/jcli3947.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028838714
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1175/mwr-2863.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026024388
207 rdf:type schema:CreativeWork
208 https://www.grid.ac/institutes/grid.424730.6 schema:alternateName Institut Català de Ciències del Clima
209 schema:name ECMWF, Shinfield Park, RG2 9AX, Reading, UK
210 Institut Catala de Ciencies del Clima (IC3), Doctor Trueta 203, 08005, Barcelona, Spain
211 rdf:type schema:Organization
212 https://www.grid.ac/institutes/grid.42781.38 schema:alternateName European Centre for Medium-Range Weather Forecasts
213 schema:name ECMWF, Shinfield Park, RG2 9AX, Reading, UK
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...