An efficient forward model of the climate controls on interannual variation in tree-ring width View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-11-26

AUTHORS

Susan E. Tolwinski-Ward, Michael N. Evans, Malcolm K. Hughes, Kevin J. Anchukaitis

ABSTRACT

We present a simple, efficient, process-based forward model of tree-ring growth, called Vaganov–Shashkin-Lite (VS-Lite), that requires as inputs only latitude and monthly temperature and precipitation. Simulations of six bristlecone pine ring-width chronologies demonstrate the interpretability of model output as an accurate representation of the climatic controls on growth. Ensemble simulations by VS-Lite of two networks of North American ring-width chronologies correlate with observations at higher significance levels on average than simulations formed by regression of ring width on the principal components of the same monthly climate data. VS-Lite retains more skill outside of calibration intervals than does the principal components regression approach. It captures the dominant low- and high-frequency spatiotemporal ring-width signals in the network with an inhomogeneous, multivariate relationship to climate. Because continuous meteorological data are most widely available at monthly temporal resolution, our model extends the set of sites at which forward-modeling studies are possible. Other potential uses of VS-Lite include generation of synthetic ring-width series for pseudo-proxy studies, as a data level model in data assimilation-based climate reconstructions, and for bias estimation in actual ring-width index series. More... »

PAGES

2419-2439

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-010-0945-5

DOI

http://dx.doi.org/10.1007/s00382-010-0945-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014696224


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Program in Applied Mathematics, University of Arizona, 85721, Tucson, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Program in Applied Mathematics, University of Arizona, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tolwinski-Ward", 
        "givenName": "Susan E.", 
        "id": "sg:person.07407444360.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07407444360.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Geology, University of Maryland, 3239 Computer and Space Sciences Bldg., 20742, College Park, MD, USA", 
          "id": "http://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Department of Geology, University of Maryland, 3239 Computer and Space Sciences Bldg., 20742, College Park, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Evans", 
        "givenName": "Michael N.", 
        "id": "sg:person.01304256717.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304256717.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratory of Tree Ring Research, University of Arizona, 105 West Stadium, 85721, Tucson, AZ, USA", 
          "id": "http://www.grid.ac/institutes/grid.134563.6", 
          "name": [
            "Laboratory of Tree Ring Research, University of Arizona, 105 West Stadium, 85721, Tucson, AZ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hughes", 
        "givenName": "Malcolm K.", 
        "id": "sg:person.07720231111.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07720231111.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, 10964, Pallisades, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, 10964, Pallisades, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Anchukaitis", 
        "givenName": "Kevin J.", 
        "id": "sg:person.013204527225.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013204527225.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00442-006-0625-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042275242", 
          "https://doi.org/10.1007/s00442-006-0625-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-009-0629-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035961896", 
          "https://doi.org/10.1007/s00382-009-0629-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00468-003-0273-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004031818", 
          "https://doi.org/10.1007/s00468-003-0273-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-5725-0_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053295643", 
          "https://doi.org/10.1007/978-1-4020-5725-0_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-009-9588-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028363982", 
          "https://doi.org/10.1007/s10584-009-9588-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-6024-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014657181", 
          "https://doi.org/10.1007/978-1-4612-6024-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00531-008-0349-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008382137", 
          "https://doi.org/10.1007/s00531-008-0349-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00468-006-0094-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010282522", 
          "https://doi.org/10.1007/s00468-006-0094-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-11-26", 
    "datePublishedReg": "2010-11-26", 
    "description": "We present a simple, efficient, process-based forward model of tree-ring growth, called Vaganov\u2013Shashkin-Lite (VS-Lite), that requires as inputs only latitude and monthly temperature and precipitation. Simulations of six bristlecone pine ring-width chronologies demonstrate the interpretability of model output as an accurate representation of the climatic controls on growth. Ensemble simulations by VS-Lite of two networks of North American ring-width chronologies correlate with observations at higher significance levels on average than simulations formed by regression of ring width on the principal components of the same monthly climate data. VS-Lite retains more skill outside of calibration intervals than does the principal components regression approach. It captures the dominant low- and high-frequency spatiotemporal ring-width signals in the network with an inhomogeneous, multivariate relationship to climate. Because continuous meteorological data are most widely available at monthly temporal resolution, our model extends the set of sites at which forward-modeling studies are possible. Other potential uses of VS-Lite include generation of synthetic ring-width series for pseudo-proxy studies, as a data level model in data assimilation-based climate reconstructions, and for bias estimation in actual ring-width index series.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-010-0945-5", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4040290", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4047651", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3081108", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3099242", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11-12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "keywords": [
      "ring-width chronologies", 
      "VS-Lite", 
      "process-based forward model", 
      "forward model", 
      "monthly temporal resolution", 
      "monthly climate data", 
      "tree-ring width", 
      "tree-ring growth", 
      "ring-width series", 
      "continuous meteorological data", 
      "principal component regression approach", 
      "climate reconstructions", 
      "climatic controls", 
      "ensemble simulations", 
      "interannual variations", 
      "Vaganov\u2013Shashkin", 
      "climate data", 
      "meteorological data", 
      "model output", 
      "climate control", 
      "monthly temperature", 
      "ring width", 
      "temporal resolution", 
      "index series", 
      "more skills", 
      "chronology", 
      "accurate representation", 
      "high significance level", 
      "bias estimation", 
      "principal components", 
      "precipitation", 
      "calibration interval", 
      "regression approach", 
      "simulations", 
      "variation", 
      "model", 
      "input", 
      "data", 
      "level model", 
      "reconstruction", 
      "series", 
      "resolution", 
      "sites", 
      "temperature", 
      "interval", 
      "width", 
      "estimation", 
      "significance level", 
      "sets of sites", 
      "components", 
      "relationship", 
      "study", 
      "output", 
      "generation", 
      "set", 
      "growth", 
      "signals", 
      "network", 
      "uses", 
      "potential uses", 
      "representation", 
      "levels", 
      "regression", 
      "skills", 
      "Lite", 
      "control", 
      "approach", 
      "interpretability", 
      "observations", 
      "efficient forward model"
    ], 
    "name": "An efficient forward model of the climate controls on interannual variation in tree-ring width", 
    "pagination": "2419-2439", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014696224"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-010-0945-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-010-0945-5", 
      "https://app.dimensions.ai/details/publication/pub.1014696224"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-010-0945-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0945-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0945-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0945-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0945-5'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      102 URIs      86 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-010-0945-5 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N2b52cb4c14fb4d54b9aea39307bf37e6
4 schema:citation sg:pub.10.1007/978-1-4020-5725-0_3
5 sg:pub.10.1007/978-1-4612-6024-0
6 sg:pub.10.1007/s00382-009-0629-1
7 sg:pub.10.1007/s00442-006-0625-7
8 sg:pub.10.1007/s00468-003-0273-z
9 sg:pub.10.1007/s00468-006-0094-y
10 sg:pub.10.1007/s00531-008-0349-5
11 sg:pub.10.1007/s10584-009-9588-0
12 schema:datePublished 2010-11-26
13 schema:datePublishedReg 2010-11-26
14 schema:description We present a simple, efficient, process-based forward model of tree-ring growth, called Vaganov–Shashkin-Lite (VS-Lite), that requires as inputs only latitude and monthly temperature and precipitation. Simulations of six bristlecone pine ring-width chronologies demonstrate the interpretability of model output as an accurate representation of the climatic controls on growth. Ensemble simulations by VS-Lite of two networks of North American ring-width chronologies correlate with observations at higher significance levels on average than simulations formed by regression of ring width on the principal components of the same monthly climate data. VS-Lite retains more skill outside of calibration intervals than does the principal components regression approach. It captures the dominant low- and high-frequency spatiotemporal ring-width signals in the network with an inhomogeneous, multivariate relationship to climate. Because continuous meteorological data are most widely available at monthly temporal resolution, our model extends the set of sites at which forward-modeling studies are possible. Other potential uses of VS-Lite include generation of synthetic ring-width series for pseudo-proxy studies, as a data level model in data assimilation-based climate reconstructions, and for bias estimation in actual ring-width index series.
15 schema:genre article
16 schema:isAccessibleForFree false
17 schema:isPartOf N0ef4cdd4a4b040e1852f72c93b6ffec2
18 Nc956c7c1d75b4714b22c5035d3933f21
19 sg:journal.1049631
20 schema:keywords Lite
21 VS-Lite
22 Vaganov–Shashkin
23 accurate representation
24 approach
25 bias estimation
26 calibration interval
27 chronology
28 climate control
29 climate data
30 climate reconstructions
31 climatic controls
32 components
33 continuous meteorological data
34 control
35 data
36 efficient forward model
37 ensemble simulations
38 estimation
39 forward model
40 generation
41 growth
42 high significance level
43 index series
44 input
45 interannual variations
46 interpretability
47 interval
48 level model
49 levels
50 meteorological data
51 model
52 model output
53 monthly climate data
54 monthly temperature
55 monthly temporal resolution
56 more skills
57 network
58 observations
59 output
60 potential uses
61 precipitation
62 principal component regression approach
63 principal components
64 process-based forward model
65 reconstruction
66 regression
67 regression approach
68 relationship
69 representation
70 resolution
71 ring width
72 ring-width chronologies
73 ring-width series
74 series
75 set
76 sets of sites
77 signals
78 significance level
79 simulations
80 sites
81 skills
82 study
83 temperature
84 temporal resolution
85 tree-ring growth
86 tree-ring width
87 uses
88 variation
89 width
90 schema:name An efficient forward model of the climate controls on interannual variation in tree-ring width
91 schema:pagination 2419-2439
92 schema:productId N0e003d0a6264434ba3d82296091d9591
93 N6d99bf6be2714485b444939f10a207ae
94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014696224
95 https://doi.org/10.1007/s00382-010-0945-5
96 schema:sdDatePublished 2022-12-01T06:28
97 schema:sdLicense https://scigraph.springernature.com/explorer/license/
98 schema:sdPublisher N34f2c308f43445bab88c61461c61006c
99 schema:url https://doi.org/10.1007/s00382-010-0945-5
100 sgo:license sg:explorer/license/
101 sgo:sdDataset articles
102 rdf:type schema:ScholarlyArticle
103 N0e003d0a6264434ba3d82296091d9591 schema:name dimensions_id
104 schema:value pub.1014696224
105 rdf:type schema:PropertyValue
106 N0ef4cdd4a4b040e1852f72c93b6ffec2 schema:volumeNumber 36
107 rdf:type schema:PublicationVolume
108 N2b52cb4c14fb4d54b9aea39307bf37e6 rdf:first sg:person.07407444360.51
109 rdf:rest N34686a75064c46aeaa1a3fd4a630407f
110 N34686a75064c46aeaa1a3fd4a630407f rdf:first sg:person.01304256717.85
111 rdf:rest Na2f61913e4dc48c28fdb5c315d5eeef6
112 N34f2c308f43445bab88c61461c61006c schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 N6d99bf6be2714485b444939f10a207ae schema:name doi
115 schema:value 10.1007/s00382-010-0945-5
116 rdf:type schema:PropertyValue
117 Na2f61913e4dc48c28fdb5c315d5eeef6 rdf:first sg:person.07720231111.35
118 rdf:rest Nd8afbadfea7943c484bdd95703238612
119 Nc956c7c1d75b4714b22c5035d3933f21 schema:issueNumber 11-12
120 rdf:type schema:PublicationIssue
121 Nd8afbadfea7943c484bdd95703238612 rdf:first sg:person.013204527225.25
122 rdf:rest rdf:nil
123 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
124 schema:name Earth Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
127 schema:name Physical Geography and Environmental Geoscience
128 rdf:type schema:DefinedTerm
129 sg:grant.3081108 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-010-0945-5
130 rdf:type schema:MonetaryGrant
131 sg:grant.3099242 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-010-0945-5
132 rdf:type schema:MonetaryGrant
133 sg:grant.4040290 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-010-0945-5
134 rdf:type schema:MonetaryGrant
135 sg:grant.4047651 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-010-0945-5
136 rdf:type schema:MonetaryGrant
137 sg:journal.1049631 schema:issn 0930-7575
138 1432-0894
139 schema:name Climate Dynamics
140 schema:publisher Springer Nature
141 rdf:type schema:Periodical
142 sg:person.01304256717.85 schema:affiliation grid-institutes:grid.164295.d
143 schema:familyName Evans
144 schema:givenName Michael N.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304256717.85
146 rdf:type schema:Person
147 sg:person.013204527225.25 schema:affiliation grid-institutes:grid.21729.3f
148 schema:familyName Anchukaitis
149 schema:givenName Kevin J.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013204527225.25
151 rdf:type schema:Person
152 sg:person.07407444360.51 schema:affiliation grid-institutes:grid.134563.6
153 schema:familyName Tolwinski-Ward
154 schema:givenName Susan E.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07407444360.51
156 rdf:type schema:Person
157 sg:person.07720231111.35 schema:affiliation grid-institutes:grid.134563.6
158 schema:familyName Hughes
159 schema:givenName Malcolm K.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07720231111.35
161 rdf:type schema:Person
162 sg:pub.10.1007/978-1-4020-5725-0_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053295643
163 https://doi.org/10.1007/978-1-4020-5725-0_3
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/978-1-4612-6024-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014657181
166 https://doi.org/10.1007/978-1-4612-6024-0
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s00382-009-0629-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035961896
169 https://doi.org/10.1007/s00382-009-0629-1
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s00442-006-0625-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042275242
172 https://doi.org/10.1007/s00442-006-0625-7
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s00468-003-0273-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1004031818
175 https://doi.org/10.1007/s00468-003-0273-z
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s00468-006-0094-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1010282522
178 https://doi.org/10.1007/s00468-006-0094-y
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s00531-008-0349-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008382137
181 https://doi.org/10.1007/s00531-008-0349-5
182 rdf:type schema:CreativeWork
183 sg:pub.10.1007/s10584-009-9588-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028363982
184 https://doi.org/10.1007/s10584-009-9588-0
185 rdf:type schema:CreativeWork
186 grid-institutes:grid.134563.6 schema:alternateName Laboratory of Tree Ring Research, University of Arizona, 105 West Stadium, 85721, Tucson, AZ, USA
187 Program in Applied Mathematics, University of Arizona, 85721, Tucson, AZ, USA
188 schema:name Laboratory of Tree Ring Research, University of Arizona, 105 West Stadium, 85721, Tucson, AZ, USA
189 Program in Applied Mathematics, University of Arizona, 85721, Tucson, AZ, USA
190 rdf:type schema:Organization
191 grid-institutes:grid.164295.d schema:alternateName Department of Geology, University of Maryland, 3239 Computer and Space Sciences Bldg., 20742, College Park, MD, USA
192 schema:name Department of Geology, University of Maryland, 3239 Computer and Space Sciences Bldg., 20742, College Park, MD, USA
193 rdf:type schema:Organization
194 grid-institutes:grid.21729.3f schema:alternateName Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, 10964, Pallisades, NY, USA
195 schema:name Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, 10964, Pallisades, NY, USA
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...