Influence of SST biases on future climate change projections View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-07-06

AUTHORS

Moetasim Ashfaq, Christopher B. Skinner, Noah S. Diffenbaugh

ABSTRACT

We use a quantile-based bias correction technique and a multi-member ensemble of the atmospheric component of NCAR CCSM3 (CAM3) simulations to investigate the influence of sea surface temperature (SST) biases on future climate change projections. The simulations, which cover 1977–1999 in the historical period and 2077–2099 in the future (A1B) period, use the CCSM3-generated SSTs as prescribed boundary conditions. Bias correction is applied to the monthly time-series of SSTs so that the simulated changes in SST mean and variability are preserved. Our comparison of CAM3 simulations with and without SST correction shows that the SST biases affect the precipitation distribution in CAM3 over many regions by introducing errors in atmospheric moisture content and upper-level (lower-level) divergence (convergence). Also, bias correction leads to significantly different precipitation and surface temperature changes over many oceanic and terrestrial regions (predominantly in the tropics) in response to the future anthropogenic increases in greenhouse forcing. The differences in the precipitation response from SST bias correction occur both in the mean and the percent change, and are independent of the ocean–atmosphere coupling. Many of these differences are comparable to or larger than the spread of future precipitation changes across the CMIP3 ensemble. Such biases can affect the simulated terrestrial feedbacks and thermohaline circulations in coupled climate model integrations through changes in the hydrological cycle and ocean salinity. Moreover, biases in CCSM3-generated SSTs are generally similar to the biases in CMIP3 ensemble mean SSTs, suggesting that other GCMs may display a similar sensitivity of projected climate change to SST errors. These results help to quantify the influence of climate model biases on the simulated climate change, and therefore should inform the effort to further develop approaches for reliable climate change projection. More... »

PAGES

1303-1319

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-010-0875-2

DOI

http://dx.doi.org/10.1007/s00382-010-0875-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007011719


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA", 
          "id": "http://www.grid.ac/institutes/grid.135519.a", 
          "name": [
            "Department of Environmental Earth System Science, Stanford University, 473 Via Ortega, 94305-4216, Stanford, CA, USA", 
            "Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN, USA", 
            "Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ashfaq", 
        "givenName": "Moetasim", 
        "id": "sg:person.07601543175.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07601543175.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN, USA", 
          "id": "http://www.grid.ac/institutes/grid.169077.e", 
          "name": [
            "Department of Environmental Earth System Science, Stanford University, 473 Via Ortega, 94305-4216, Stanford, CA, USA", 
            "Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Skinner", 
        "givenName": "Christopher B.", 
        "id": "sg:person.01043636300.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043636300.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Woods Institute for the Environment, Stanford University, Stanford, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Environmental Earth System Science, Stanford University, 473 Via Ortega, 94305-4216, Stanford, CA, USA", 
            "Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN, USA", 
            "Woods Institute for the Environment, Stanford University, Stanford, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Diffenbaugh", 
        "givenName": "Noah S.", 
        "id": "sg:person.07755742371.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07755742371.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/18648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010854918", 
          "https://doi.org/10.1038/18648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-2944-8_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042520637", 
          "https://doi.org/10.1007/978-1-4020-2944-8_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031459988", 
          "https://doi.org/10.1038/nature04744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415603a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008840831", 
          "https://doi.org/10.1038/415603a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-008-0364-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044314609", 
          "https://doi.org/10.1007/s00382-008-0364-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1026238318585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039361485", 
          "https://doi.org/10.1023/a:1026238318585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-008-0466-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048586312", 
          "https://doi.org/10.1007/s00382-008-0466-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/320602a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049309236", 
          "https://doi.org/10.1038/320602a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02919316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026399327", 
          "https://doi.org/10.1007/bf02919316"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-07-06", 
    "datePublishedReg": "2010-07-06", 
    "description": "We use a quantile-based bias correction technique and a multi-member ensemble of the atmospheric component of NCAR CCSM3 (CAM3) simulations to investigate the influence of sea surface temperature (SST) biases on future climate change projections. The simulations, which cover 1977\u20131999 in the historical period and 2077\u20132099 in the future (A1B) period, use the CCSM3-generated SSTs as prescribed boundary conditions. Bias correction is applied to the monthly time-series of SSTs so that the simulated changes in SST mean and variability are preserved. Our comparison of CAM3 simulations with and without SST correction shows that the SST biases affect the precipitation distribution in CAM3 over many regions by introducing errors in atmospheric moisture content and upper-level (lower-level) divergence (convergence). Also, bias correction leads to significantly different precipitation and surface temperature changes over many oceanic and terrestrial regions (predominantly in the tropics) in response to the future anthropogenic increases in greenhouse forcing. The differences in the precipitation response from SST bias correction occur both in the mean and the percent change, and are independent of the ocean\u2013atmosphere coupling. Many of these differences are comparable to or larger than the spread of future precipitation changes across the CMIP3 ensemble. Such biases can affect the simulated terrestrial feedbacks and thermohaline circulations in coupled climate model integrations through changes in the hydrological cycle and ocean salinity. Moreover, biases in CCSM3-generated SSTs are generally similar to the biases in CMIP3 ensemble mean SSTs, suggesting that other GCMs may display a similar sensitivity of projected climate change to SST errors. These results help to quantify the influence of climate model biases on the simulated climate change, and therefore should inform the effort to further develop approaches for reliable climate change projection.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-010-0875-2", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3054698", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7-8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "keywords": [
      "climate change projections", 
      "future climate change projections", 
      "change projections", 
      "bias correction", 
      "SST biases", 
      "reliable climate change projections", 
      "sea surface temperature biases", 
      "climate change", 
      "SST bias correction", 
      "surface temperature biases", 
      "ocean\u2013atmosphere coupling", 
      "future precipitation changes", 
      "climate model integrations", 
      "multi\u2010member ensembles", 
      "climate model biases", 
      "atmospheric moisture content", 
      "upper-level divergence", 
      "surface temperature changes", 
      "bias correction techniques", 
      "simulated climate change", 
      "CCSM3 simulations", 
      "CAM3 simulations", 
      "thermohaline circulation", 
      "precipitation response", 
      "CMIP3 ensemble", 
      "SST errors", 
      "ocean salinity", 
      "mean SST", 
      "model biases", 
      "SST correction", 
      "precipitation changes", 
      "hydrological cycle", 
      "temperature biases", 
      "precipitation distribution", 
      "atmospheric component", 
      "terrestrial feedbacks", 
      "anthropogenic increases", 
      "SST mean", 
      "future periods", 
      "terrestrial regions", 
      "SST", 
      "different precipitation", 
      "model integration", 
      "historical period", 
      "CCSM3", 
      "temperature changes", 
      "biases", 
      "projections", 
      "ensemble", 
      "correction technique", 
      "CAM3", 
      "GCM", 
      "precipitation", 
      "salinity", 
      "such biases", 
      "moisture content", 
      "region", 
      "circulation", 
      "variability", 
      "boundary conditions", 
      "changes", 
      "period", 
      "simulations", 
      "influence", 
      "correction", 
      "cycle", 
      "distribution", 
      "error", 
      "feedback", 
      "divergence", 
      "content", 
      "conditions", 
      "comparison", 
      "components", 
      "differences", 
      "increase", 
      "response", 
      "means", 
      "greenhouse", 
      "coupling", 
      "spread", 
      "similar sensitivity", 
      "results", 
      "sensitivity", 
      "integration", 
      "technique", 
      "efforts", 
      "percent change", 
      "approach"
    ], 
    "name": "Influence of SST biases on future climate change projections", 
    "pagination": "1303-1319", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007011719"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-010-0875-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-010-0875-2", 
      "https://app.dimensions.ai/details/publication/pub.1007011719"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_513.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-010-0875-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0875-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0875-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0875-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0875-2'


 

This table displays all metadata directly associated to this object as RDF triples.

213 TRIPLES      21 PREDICATES      123 URIs      105 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-010-0875-2 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0406
4 schema:author Nd45f3e07adb54d68bdde598c2632386b
5 schema:citation sg:pub.10.1007/978-1-4020-2944-8_7
6 sg:pub.10.1007/bf02919316
7 sg:pub.10.1007/s00382-008-0364-z
8 sg:pub.10.1007/s00382-008-0466-7
9 sg:pub.10.1023/a:1026238318585
10 sg:pub.10.1038/18648
11 sg:pub.10.1038/320602a0
12 sg:pub.10.1038/415603a
13 sg:pub.10.1038/nature04744
14 schema:datePublished 2010-07-06
15 schema:datePublishedReg 2010-07-06
16 schema:description We use a quantile-based bias correction technique and a multi-member ensemble of the atmospheric component of NCAR CCSM3 (CAM3) simulations to investigate the influence of sea surface temperature (SST) biases on future climate change projections. The simulations, which cover 1977–1999 in the historical period and 2077–2099 in the future (A1B) period, use the CCSM3-generated SSTs as prescribed boundary conditions. Bias correction is applied to the monthly time-series of SSTs so that the simulated changes in SST mean and variability are preserved. Our comparison of CAM3 simulations with and without SST correction shows that the SST biases affect the precipitation distribution in CAM3 over many regions by introducing errors in atmospheric moisture content and upper-level (lower-level) divergence (convergence). Also, bias correction leads to significantly different precipitation and surface temperature changes over many oceanic and terrestrial regions (predominantly in the tropics) in response to the future anthropogenic increases in greenhouse forcing. The differences in the precipitation response from SST bias correction occur both in the mean and the percent change, and are independent of the ocean–atmosphere coupling. Many of these differences are comparable to or larger than the spread of future precipitation changes across the CMIP3 ensemble. Such biases can affect the simulated terrestrial feedbacks and thermohaline circulations in coupled climate model integrations through changes in the hydrological cycle and ocean salinity. Moreover, biases in CCSM3-generated SSTs are generally similar to the biases in CMIP3 ensemble mean SSTs, suggesting that other GCMs may display a similar sensitivity of projected climate change to SST errors. These results help to quantify the influence of climate model biases on the simulated climate change, and therefore should inform the effort to further develop approaches for reliable climate change projection.
17 schema:genre article
18 schema:isAccessibleForFree false
19 schema:isPartOf Nd89a329ca3654a919eda1b13d3a371f4
20 Nfc3af02ddc2c43e8979cc069f995effa
21 sg:journal.1049631
22 schema:keywords CAM3
23 CAM3 simulations
24 CCSM3
25 CCSM3 simulations
26 CMIP3 ensemble
27 GCM
28 SST
29 SST bias correction
30 SST biases
31 SST correction
32 SST errors
33 SST mean
34 anthropogenic increases
35 approach
36 atmospheric component
37 atmospheric moisture content
38 bias correction
39 bias correction techniques
40 biases
41 boundary conditions
42 change projections
43 changes
44 circulation
45 climate change
46 climate change projections
47 climate model biases
48 climate model integrations
49 comparison
50 components
51 conditions
52 content
53 correction
54 correction technique
55 coupling
56 cycle
57 differences
58 different precipitation
59 distribution
60 divergence
61 efforts
62 ensemble
63 error
64 feedback
65 future climate change projections
66 future periods
67 future precipitation changes
68 greenhouse
69 historical period
70 hydrological cycle
71 increase
72 influence
73 integration
74 mean SST
75 means
76 model biases
77 model integration
78 moisture content
79 multi‐member ensembles
80 ocean salinity
81 ocean–atmosphere coupling
82 percent change
83 period
84 precipitation
85 precipitation changes
86 precipitation distribution
87 precipitation response
88 projections
89 region
90 reliable climate change projections
91 response
92 results
93 salinity
94 sea surface temperature biases
95 sensitivity
96 similar sensitivity
97 simulated climate change
98 simulations
99 spread
100 such biases
101 surface temperature biases
102 surface temperature changes
103 technique
104 temperature biases
105 temperature changes
106 terrestrial feedbacks
107 terrestrial regions
108 thermohaline circulation
109 upper-level divergence
110 variability
111 schema:name Influence of SST biases on future climate change projections
112 schema:pagination 1303-1319
113 schema:productId N0d7c411cc8124a618e1c9b2351f58f3c
114 N34a9b2d7d6824905a1fc0be7dd0253b3
115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007011719
116 https://doi.org/10.1007/s00382-010-0875-2
117 schema:sdDatePublished 2022-12-01T06:28
118 schema:sdLicense https://scigraph.springernature.com/explorer/license/
119 schema:sdPublisher Nb7825aa86af841c0ab73effd9118b8d2
120 schema:url https://doi.org/10.1007/s00382-010-0875-2
121 sgo:license sg:explorer/license/
122 sgo:sdDataset articles
123 rdf:type schema:ScholarlyArticle
124 N0d7c411cc8124a618e1c9b2351f58f3c schema:name doi
125 schema:value 10.1007/s00382-010-0875-2
126 rdf:type schema:PropertyValue
127 N34a9b2d7d6824905a1fc0be7dd0253b3 schema:name dimensions_id
128 schema:value pub.1007011719
129 rdf:type schema:PropertyValue
130 Nb7825aa86af841c0ab73effd9118b8d2 schema:name Springer Nature - SN SciGraph project
131 rdf:type schema:Organization
132 Nd45f3e07adb54d68bdde598c2632386b rdf:first sg:person.07601543175.18
133 rdf:rest Nfad647021f0f41e2a4557ddde6d2821d
134 Nd607af8b5477496587095ecbb90c1eba rdf:first sg:person.07755742371.03
135 rdf:rest rdf:nil
136 Nd89a329ca3654a919eda1b13d3a371f4 schema:issueNumber 7-8
137 rdf:type schema:PublicationIssue
138 Nfad647021f0f41e2a4557ddde6d2821d rdf:first sg:person.01043636300.88
139 rdf:rest Nd607af8b5477496587095ecbb90c1eba
140 Nfc3af02ddc2c43e8979cc069f995effa schema:volumeNumber 36
141 rdf:type schema:PublicationVolume
142 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
143 schema:name Earth Sciences
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
146 schema:name Atmospheric Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
149 schema:name Physical Geography and Environmental Geoscience
150 rdf:type schema:DefinedTerm
151 sg:grant.3054698 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-010-0875-2
152 rdf:type schema:MonetaryGrant
153 sg:journal.1049631 schema:issn 0930-7575
154 1432-0894
155 schema:name Climate Dynamics
156 schema:publisher Springer Nature
157 rdf:type schema:Periodical
158 sg:person.01043636300.88 schema:affiliation grid-institutes:grid.169077.e
159 schema:familyName Skinner
160 schema:givenName Christopher B.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043636300.88
162 rdf:type schema:Person
163 sg:person.07601543175.18 schema:affiliation grid-institutes:grid.135519.a
164 schema:familyName Ashfaq
165 schema:givenName Moetasim
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07601543175.18
167 rdf:type schema:Person
168 sg:person.07755742371.03 schema:affiliation grid-institutes:grid.168010.e
169 schema:familyName Diffenbaugh
170 schema:givenName Noah S.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07755742371.03
172 rdf:type schema:Person
173 sg:pub.10.1007/978-1-4020-2944-8_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042520637
174 https://doi.org/10.1007/978-1-4020-2944-8_7
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/bf02919316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026399327
177 https://doi.org/10.1007/bf02919316
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s00382-008-0364-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1044314609
180 https://doi.org/10.1007/s00382-008-0364-z
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/s00382-008-0466-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048586312
183 https://doi.org/10.1007/s00382-008-0466-7
184 rdf:type schema:CreativeWork
185 sg:pub.10.1023/a:1026238318585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039361485
186 https://doi.org/10.1023/a:1026238318585
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/18648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010854918
189 https://doi.org/10.1038/18648
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/320602a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049309236
192 https://doi.org/10.1038/320602a0
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/415603a schema:sameAs https://app.dimensions.ai/details/publication/pub.1008840831
195 https://doi.org/10.1038/415603a
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nature04744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031459988
198 https://doi.org/10.1038/nature04744
199 rdf:type schema:CreativeWork
200 grid-institutes:grid.135519.a schema:alternateName Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
201 schema:name Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
202 Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN, USA
203 Department of Environmental Earth System Science, Stanford University, 473 Via Ortega, 94305-4216, Stanford, CA, USA
204 rdf:type schema:Organization
205 grid-institutes:grid.168010.e schema:alternateName Woods Institute for the Environment, Stanford University, Stanford, CA, USA
206 schema:name Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN, USA
207 Department of Environmental Earth System Science, Stanford University, 473 Via Ortega, 94305-4216, Stanford, CA, USA
208 Woods Institute for the Environment, Stanford University, Stanford, CA, USA
209 rdf:type schema:Organization
210 grid-institutes:grid.169077.e schema:alternateName Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN, USA
211 schema:name Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN, USA
212 Department of Environmental Earth System Science, Stanford University, 473 Via Ortega, 94305-4216, Stanford, CA, USA
213 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...