Predictability of Mediterranean climate variables from oceanic variability. Part II: Statistical models for monthly precipitation and temperature in the Mediterranean ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-03

AUTHORS

E. Hertig, J. Jacobeit

ABSTRACT

The objective of this study is to investigate the predictability of monthly climate variables in the Mediterranean area by using statistical models. It is a well-known fact that the future state of the atmosphere is sensitive to preceding conditions of the slowly varying ocean component with lead times being sufficiently long for predictive assessments. Sea surface temperatures (SSTs) are therefore regarded as one of the best variables to be used in seasonal climate predictions. In the present study, SST-regimes which have been derived and discussed in detail in Part I of this paper, are used with regard to monthly climate predictions for the Mediterranean area. Thus, cross-correlations with time lags from 0 up to 12 months and ensuing multiple regression analyses between the large-scale SST-regimes and monthly precipitation and temperature for Mediterranean sub-regions have been performed for the period 1950–2003. Statistical hindcast ensembles of Mediterranean precipitation including categorical forecast skill can be identified only for some months in different seasons and for some individual regions of the Mediterranean area. Major predictors are the tropical Atlantic Ocean and the North Atlantic Ocean SST-regimes, but significant relationships can also be found with tropical Pacific and North Pacific SST-regimes. Statistical hindcast ensembles of Mediterranean temperature with some categorical forecast skill can be determined primarily for the Western Mediterranean and the North African regions throughout the year. As for precipitation the major predictors for temperature are located in the tropical Atlantic Ocean and the North Atlantic Ocean, but some connections also exist with the Pacific SST variations. More... »

PAGES

825-843

Journal

TITLE

Climate Dynamics

ISSUE

5-6

VOLUME

36

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-010-0821-3

DOI

http://dx.doi.org/10.1007/s00382-010-0821-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009628744


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Augsburg", 
          "id": "https://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Institute for Geography, University of Augsburg, Universit\u00e4tsstr. 10, 86135, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hertig", 
        "givenName": "E.", 
        "id": "sg:person.07417204677.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417204677.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Augsburg", 
          "id": "https://www.grid.ac/institutes/grid.7307.3", 
          "name": [
            "Institute for Geography, University of Augsburg, Universit\u00e4tsstr. 10, 86135, Augsburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jacobeit", 
        "givenName": "J.", 
        "id": "sg:person.015147437467.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015147437467.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/1520-0442(2001)014<4266:ofotwl>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002475595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-2687(03)46001-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004869498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2002)015<0008:cossmo>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005228006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.1097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006998375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-006-0175-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007987868", 
          "https://doi.org/10.1007/s00382-006-0175-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-006-0175-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007987868", 
          "https://doi.org/10.1007/s00382-006-0175-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.3370060305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009816718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/18648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010854918", 
          "https://doi.org/10.1038/18648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/18648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010854918", 
          "https://doi.org/10.1038/18648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2001)014<3408:tabeaw>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012747735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0870.2005.00130.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019766155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2001gl014248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021244620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1992)120<2709:anogam>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027090326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1989)117<0572:ssacci>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028995614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820100178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029597889", 
          "https://doi.org/10.1007/s003820100178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.1574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029774021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.1661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030118247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0870.2005.00127.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030337073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2000gl012510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032350713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/97jc03413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033384943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0870.2005.00111.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035120703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2009jcli2824.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038772936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039182560", 
          "https://doi.org/10.1007/s003820050165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-0870.2005.00105.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042758965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.1234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044732854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.1234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044732854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0088(199904)19:5<513::aid-joc370>3.0.co;2-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045034062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0088(199904)19:5<513::aid-joc370>3.0.co;2-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045034062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2000)013<2217:rtcstc>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047222381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2001gl014421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047827592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/1999gl900613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047847168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/joc.1601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050942695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1999)012<0829:rtcstc>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051099908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-85-6-853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063454334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1911963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069639876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2347986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101982794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2347986", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101982794"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-03", 
    "datePublishedReg": "2011-03-01", 
    "description": "The objective of this study is to investigate the predictability of monthly climate variables in the Mediterranean area by using statistical models. It is a well-known fact that the future state of the atmosphere is sensitive to preceding conditions of the slowly varying ocean component with lead times being sufficiently long for predictive assessments. Sea surface temperatures (SSTs) are therefore regarded as one of the best variables to be used in seasonal climate predictions. In the present study, SST-regimes which have been derived and discussed in detail in Part I of this paper, are used with regard to monthly climate predictions for the Mediterranean area. Thus, cross-correlations with time lags from 0 up to 12 months and ensuing multiple regression analyses between the large-scale SST-regimes and monthly precipitation and temperature for Mediterranean sub-regions have been performed for the period 1950\u20132003. Statistical hindcast ensembles of Mediterranean precipitation including categorical forecast skill can be identified only for some months in different seasons and for some individual regions of the Mediterranean area. Major predictors are the tropical Atlantic Ocean and the North Atlantic Ocean SST-regimes, but significant relationships can also be found with tropical Pacific and North Pacific SST-regimes. Statistical hindcast ensembles of Mediterranean temperature with some categorical forecast skill can be determined primarily for the Western Mediterranean and the North African regions throughout the year. As for precipitation the major predictors for temperature are located in the tropical Atlantic Ocean and the North Atlantic Ocean, but some connections also exist with the Pacific SST variations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00382-010-0821-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "name": "Predictability of Mediterranean climate variables from oceanic variability. Part II: Statistical models for monthly precipitation and temperature in the Mediterranean area", 
    "pagination": "825-843", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2dde84e8aebe143d9034e6fd168114725f1e761bca5889b03d59decad0a06e93"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-010-0821-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009628744"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-010-0821-3", 
      "https://app.dimensions.ai/details/publication/pub.1009628744"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00382-010-0821-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0821-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0821-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0821-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-010-0821-3'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      59 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-010-0821-3 schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author N3c9522ea0fd74a35a3815ffd5bca94a1
4 schema:citation sg:pub.10.1007/s00382-006-0175-z
5 sg:pub.10.1007/s003820050165
6 sg:pub.10.1007/s003820100178
7 sg:pub.10.1038/18648
8 https://doi.org/10.1002/(sici)1097-0088(199904)19:5<513::aid-joc370>3.0.co;2-d
9 https://doi.org/10.1002/joc.1097
10 https://doi.org/10.1002/joc.1234
11 https://doi.org/10.1002/joc.1574
12 https://doi.org/10.1002/joc.1601
13 https://doi.org/10.1002/joc.1661
14 https://doi.org/10.1002/joc.3370060305
15 https://doi.org/10.1016/s0065-2687(03)46001-9
16 https://doi.org/10.1029/1999gl900613
17 https://doi.org/10.1029/2000gl012510
18 https://doi.org/10.1029/2001gl014248
19 https://doi.org/10.1029/2001gl014421
20 https://doi.org/10.1029/97jc03413
21 https://doi.org/10.1111/j.1600-0870.2005.00105.x
22 https://doi.org/10.1111/j.1600-0870.2005.00111.x
23 https://doi.org/10.1111/j.1600-0870.2005.00127.x
24 https://doi.org/10.1111/j.1600-0870.2005.00130.x
25 https://doi.org/10.1175/1520-0442(1999)012<0829:rtcstc>2.0.co;2
26 https://doi.org/10.1175/1520-0442(2000)013<2217:rtcstc>2.0.co;2
27 https://doi.org/10.1175/1520-0442(2001)014<3408:tabeaw>2.0.co;2
28 https://doi.org/10.1175/1520-0442(2001)014<4266:ofotwl>2.0.co;2
29 https://doi.org/10.1175/1520-0442(2002)015<0008:cossmo>2.0.co;2
30 https://doi.org/10.1175/1520-0493(1989)117<0572:ssacci>2.0.co;2
31 https://doi.org/10.1175/1520-0493(1992)120<2709:anogam>2.0.co;2
32 https://doi.org/10.1175/2009jcli2824.1
33 https://doi.org/10.1175/bams-85-6-853
34 https://doi.org/10.2307/1911963
35 https://doi.org/10.2307/2347986
36 schema:datePublished 2011-03
37 schema:datePublishedReg 2011-03-01
38 schema:description The objective of this study is to investigate the predictability of monthly climate variables in the Mediterranean area by using statistical models. It is a well-known fact that the future state of the atmosphere is sensitive to preceding conditions of the slowly varying ocean component with lead times being sufficiently long for predictive assessments. Sea surface temperatures (SSTs) are therefore regarded as one of the best variables to be used in seasonal climate predictions. In the present study, SST-regimes which have been derived and discussed in detail in Part I of this paper, are used with regard to monthly climate predictions for the Mediterranean area. Thus, cross-correlations with time lags from 0 up to 12 months and ensuing multiple regression analyses between the large-scale SST-regimes and monthly precipitation and temperature for Mediterranean sub-regions have been performed for the period 1950–2003. Statistical hindcast ensembles of Mediterranean precipitation including categorical forecast skill can be identified only for some months in different seasons and for some individual regions of the Mediterranean area. Major predictors are the tropical Atlantic Ocean and the North Atlantic Ocean SST-regimes, but significant relationships can also be found with tropical Pacific and North Pacific SST-regimes. Statistical hindcast ensembles of Mediterranean temperature with some categorical forecast skill can be determined primarily for the Western Mediterranean and the North African regions throughout the year. As for precipitation the major predictors for temperature are located in the tropical Atlantic Ocean and the North Atlantic Ocean, but some connections also exist with the Pacific SST variations.
39 schema:genre research_article
40 schema:inLanguage en
41 schema:isAccessibleForFree false
42 schema:isPartOf N8b0b4ac54e154938bee411eeffb7690f
43 N94cb5f0eac984434834babdd0054ecd7
44 sg:journal.1049631
45 schema:name Predictability of Mediterranean climate variables from oceanic variability. Part II: Statistical models for monthly precipitation and temperature in the Mediterranean area
46 schema:pagination 825-843
47 schema:productId N53c6f1e3bcfd4841ba6f7b1821176419
48 N9232899bf4f9458abc56d7bedb2ddd9a
49 Na617b0b7e6a4415db7570cc65a7a935d
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009628744
51 https://doi.org/10.1007/s00382-010-0821-3
52 schema:sdDatePublished 2019-04-10T17:31
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N176b73ff478748bf916395c6920f9ddd
55 schema:url http://link.springer.com/10.1007%2Fs00382-010-0821-3
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N176b73ff478748bf916395c6920f9ddd schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N3c9522ea0fd74a35a3815ffd5bca94a1 rdf:first sg:person.07417204677.33
62 rdf:rest N81a32acf83574263b981b45bb8772a3c
63 N53c6f1e3bcfd4841ba6f7b1821176419 schema:name doi
64 schema:value 10.1007/s00382-010-0821-3
65 rdf:type schema:PropertyValue
66 N81a32acf83574263b981b45bb8772a3c rdf:first sg:person.015147437467.96
67 rdf:rest rdf:nil
68 N8b0b4ac54e154938bee411eeffb7690f schema:issueNumber 5-6
69 rdf:type schema:PublicationIssue
70 N9232899bf4f9458abc56d7bedb2ddd9a schema:name dimensions_id
71 schema:value pub.1009628744
72 rdf:type schema:PropertyValue
73 N94cb5f0eac984434834babdd0054ecd7 schema:volumeNumber 36
74 rdf:type schema:PublicationVolume
75 Na617b0b7e6a4415db7570cc65a7a935d schema:name readcube_id
76 schema:value 2dde84e8aebe143d9034e6fd168114725f1e761bca5889b03d59decad0a06e93
77 rdf:type schema:PropertyValue
78 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
79 schema:name Earth Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
82 schema:name Oceanography
83 rdf:type schema:DefinedTerm
84 sg:journal.1049631 schema:issn 0930-7575
85 1432-0894
86 schema:name Climate Dynamics
87 rdf:type schema:Periodical
88 sg:person.015147437467.96 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
89 schema:familyName Jacobeit
90 schema:givenName J.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015147437467.96
92 rdf:type schema:Person
93 sg:person.07417204677.33 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
94 schema:familyName Hertig
95 schema:givenName E.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417204677.33
97 rdf:type schema:Person
98 sg:pub.10.1007/s00382-006-0175-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1007987868
99 https://doi.org/10.1007/s00382-006-0175-z
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s003820050165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039182560
102 https://doi.org/10.1007/s003820050165
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s003820100178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029597889
105 https://doi.org/10.1007/s003820100178
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/18648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010854918
108 https://doi.org/10.1038/18648
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/(sici)1097-0088(199904)19:5<513::aid-joc370>3.0.co;2-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1045034062
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/joc.1097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006998375
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1002/joc.1234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044732854
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1002/joc.1574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029774021
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1002/joc.1601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050942695
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1002/joc.1661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030118247
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1002/joc.3370060305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009816718
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0065-2687(03)46001-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004869498
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1029/1999gl900613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047847168
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1029/2000gl012510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032350713
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1029/2001gl014248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021244620
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1029/2001gl014421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047827592
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1029/97jc03413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033384943
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1111/j.1600-0870.2005.00105.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042758965
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1111/j.1600-0870.2005.00111.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035120703
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1111/j.1600-0870.2005.00127.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030337073
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1111/j.1600-0870.2005.00130.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019766155
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1175/1520-0442(1999)012<0829:rtcstc>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051099908
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1175/1520-0442(2000)013<2217:rtcstc>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047222381
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1175/1520-0442(2001)014<3408:tabeaw>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012747735
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1175/1520-0442(2001)014<4266:ofotwl>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002475595
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1175/1520-0442(2002)015<0008:cossmo>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005228006
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1175/1520-0493(1989)117<0572:ssacci>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028995614
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1175/1520-0493(1992)120<2709:anogam>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027090326
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1175/2009jcli2824.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038772936
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1175/bams-85-6-853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063454334
161 rdf:type schema:CreativeWork
162 https://doi.org/10.2307/1911963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069639876
163 rdf:type schema:CreativeWork
164 https://doi.org/10.2307/2347986 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101982794
165 rdf:type schema:CreativeWork
166 https://www.grid.ac/institutes/grid.7307.3 schema:alternateName University of Augsburg
167 schema:name Institute for Geography, University of Augsburg, Universitätsstr. 10, 86135, Augsburg, Germany
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...