Probabilistic estimates of recent changes in temperature: a multi-scale attribution analysis View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-06-28

AUTHORS

Nikolaos Christidis, Peter A. Stott, Francis W. Zwiers, Hideo Shiogama, Toru Nozawa

ABSTRACT

The role of anthropogenic forcings in temperature changes during recent decades is investigated over a range of spatial scales. Changes in the annual mean surface temperature and also in the warmest night of the year, which has implications for human health, are considered. Distributions of regional trends with and without the effect of human activity are produced, using constraints from a global optimal detection analysis. Anthropogenic forcings are estimated to have more than doubled the likelihood of mean warming in all regions considered except central North America, where results are more model dependent. The likelihood of warming of the warmest night has also increased, but the estimated change is more uncertain. Inferences on sub-continental scales are indicative rather than definitive because of the absence of locally important forcings and processes in model simulations, as well as model biases. As model inconsistencies may impact regional analyses, a multi-model approach is essential. More... »

PAGES

1139-1156

References to SciGraph publications

  • 1996-07. A search for human influences on the thermal structure of the atmosphere in NATURE
  • 2000-02. Uncertainties in regional climate change prediction: a regional analysis of ensemble simulations with the HADCM2 coupled AOGCM in CLIMATE DYNAMICS
  • 1997-09. Multi-fingerprint detection and attribution analysis of greenhouse gas, greenhouse gas-plus-aerosol and solar forced climate change in CLIMATE DYNAMICS
  • 1997-09. Multi-pattern fingerprint method for detection and attribution of climate change in CLIMATE DYNAMICS
  • 2003-02-18. Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios in CLIMATE DYNAMICS
  • 2003-02. Liability for climate change in NATURE
  • 2007-07-03. Multivariate Bayesian analysis of atmosphere–ocean general circulation models in ENVIRONMENTAL AND ECOLOGICAL STATISTICS
  • 2005-08. The End-to-End Attribution Problem: From Emissions to Impacts in CLIMATIC CHANGE
  • 1999-06. Causes of twentieth-century temperature change near the Earth's surface in NATURE
  • 2004-12. Human contribution to the European heatwave of 2003 in NATURE
  • 2004-01-11. The role of increasing temperature variability in European summer heatwaves in NATURE
  • 1999-06. Checking for model consistency in optimal fingerprinting in CLIMATE DYNAMICS
  • 2000-02. The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3 in CLIMATE DYNAMICS
  • 2000-02. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments in CLIMATE DYNAMICS
  • 2000-10. Parallel climate model (PCM) control and transient simulations in CLIMATE DYNAMICS
  • 2002-04. Variability and trends of sub-continental scale surface climate in the twentieth century. Part I: observations in CLIMATE DYNAMICS
  • 2003-08-29. Estimating signal amplitudes in optimal fingerprinting, part I: theory in CLIMATE DYNAMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00382-009-0615-7

    DOI

    http://dx.doi.org/10.1007/s00382-009-0615-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1046717939


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Geography and Environmental Geoscience", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Christidis", 
            "givenName": "Nikolaos", 
            "id": "sg:person.01100172067.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100172067.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Met Office Hadley Centre (Reading Unit), Meteorology Building, University of Reading, RG6 6BB, Reading, UK", 
              "id": "http://www.grid.ac/institutes/grid.9435.b", 
              "name": [
                "Met Office Hadley Centre (Reading Unit), Meteorology Building, University of Reading, RG6 6BB, Reading, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stott", 
            "givenName": "Peter A.", 
            "id": "sg:person.015667030077.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667030077.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Climate Research Division, Environment Canada, M3H 5T4, Toronto, ON, Canada", 
              "id": "http://www.grid.ac/institutes/grid.410334.1", 
              "name": [
                "Climate Research Division, Environment Canada, M3H 5T4, Toronto, ON, Canada"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zwiers", 
            "givenName": "Francis W.", 
            "id": "sg:person.0603650500.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603650500.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute for Environmental Studies, 305-8506, Tsukuba, Ibaraki, Japan", 
              "id": "http://www.grid.ac/institutes/grid.140139.e", 
              "name": [
                "National Institute for Environmental Studies, 305-8506, Tsukuba, Ibaraki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shiogama", 
            "givenName": "Hideo", 
            "id": "sg:person.011356656533.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356656533.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute for Environmental Studies, 305-8506, Tsukuba, Ibaraki, Japan", 
              "id": "http://www.grid.ac/institutes/grid.140139.e", 
              "name": [
                "National Institute for Environmental Studies, 305-8506, Tsukuba, Ibaraki, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nozawa", 
            "givenName": "Toru", 
            "id": "sg:person.011033746441.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011033746441.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/382039a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029787674", 
              "https://doi.org/10.1038/382039a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10651-007-0018-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014094724", 
              "https://doi.org/10.1007/s10651-007-0018-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/421891a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003018692", 
              "https://doi.org/10.1038/421891a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-003-0313-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047305108", 
              "https://doi.org/10.1007/s00382-003-0313-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00013733", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049849175", 
              "https://doi.org/10.1007/pl00013733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050185", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008860100", 
              "https://doi.org/10.1007/s003820050185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015242699", 
              "https://doi.org/10.1007/s003820050010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10584-005-6778-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037417665", 
              "https://doi.org/10.1007/s10584-005-6778-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/21164", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039310835", 
              "https://doi.org/10.1038/21164"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820000079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012213043", 
              "https://doi.org/10.1007/s003820000079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028450143", 
              "https://doi.org/10.1038/nature03089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002170907", 
              "https://doi.org/10.1007/s003820050009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-002-0296-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085138454", 
              "https://doi.org/10.1007/s00382-002-0296-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008218600", 
              "https://doi.org/10.1007/s003820050186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-001-0204-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041946595", 
              "https://doi.org/10.1007/s00382-001-0204-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006979406", 
              "https://doi.org/10.1038/nature02300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007895196", 
              "https://doi.org/10.1007/s003820050291"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2009-06-28", 
        "datePublishedReg": "2009-06-28", 
        "description": "The role of anthropogenic forcings in temperature changes during recent decades is investigated over a range of spatial scales. Changes in the annual mean surface temperature and also in the warmest night of the year, which has implications for human health, are considered. Distributions of regional trends with and without the effect of human activity are produced, using constraints from a global optimal detection analysis. Anthropogenic forcings are estimated to have more than doubled the likelihood of mean warming in all regions considered except central North America, where results are more model dependent. The likelihood of warming of the warmest night has also increased, but the estimated change is more uncertain. Inferences on sub-continental scales are indicative rather than definitive because of the absence of locally important forcings and processes in model simulations, as well as model biases. As model inconsistencies may impact regional analyses, a multi-model approach is essential.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00382-009-0615-7", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7037241", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1049631", 
            "issn": [
              "0930-7575", 
              "1432-0894"
            ], 
            "name": "Climate Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7-8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "34"
          }
        ], 
        "keywords": [
          "anthropogenic forcing", 
          "warm nights", 
          "annual mean surface temperature", 
          "sub-continental scale", 
          "mean surface temperature", 
          "central North America", 
          "optimal detection analysis", 
          "multi-model approach", 
          "important forcing", 
          "model biases", 
          "surface temperature", 
          "model simulations", 
          "regional trends", 
          "attribution analysis", 
          "forcing", 
          "human activities", 
          "regional analysis", 
          "probabilistic estimates", 
          "temperature changes", 
          "spatial scales", 
          "North America", 
          "recent decades", 
          "recent changes", 
          "model inconsistencies", 
          "warming", 
          "scale", 
          "changes", 
          "temperature", 
          "America", 
          "biases", 
          "trends", 
          "estimates", 
          "region", 
          "night", 
          "human health", 
          "distribution", 
          "constraints", 
          "implications", 
          "decades", 
          "analysis", 
          "inference", 
          "simulations", 
          "range", 
          "model", 
          "years", 
          "process", 
          "detection analysis", 
          "inconsistencies", 
          "results", 
          "likelihood", 
          "activity", 
          "absence", 
          "role", 
          "effect", 
          "approach", 
          "health", 
          "global optimal detection analysis", 
          "likelihood of warming", 
          "multi-scale attribution analysis"
        ], 
        "name": "Probabilistic estimates of recent changes in temperature: a multi-scale attribution analysis", 
        "pagination": "1139-1156", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1046717939"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00382-009-0615-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00382-009-0615-7", 
          "https://app.dimensions.ai/details/publication/pub.1046717939"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_485.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00382-009-0615-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-009-0615-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-009-0615-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-009-0615-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-009-0615-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    224 TRIPLES      22 PREDICATES      101 URIs      76 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00382-009-0615-7 schema:about anzsrc-for:04
    2 anzsrc-for:0406
    3 schema:author N39c032e3709549b6814fb1f1a257a2af
    4 schema:citation sg:pub.10.1007/pl00013733
    5 sg:pub.10.1007/s00382-001-0204-x
    6 sg:pub.10.1007/s00382-002-0296-y
    7 sg:pub.10.1007/s00382-003-0313-9
    8 sg:pub.10.1007/s003820000079
    9 sg:pub.10.1007/s003820050009
    10 sg:pub.10.1007/s003820050010
    11 sg:pub.10.1007/s003820050185
    12 sg:pub.10.1007/s003820050186
    13 sg:pub.10.1007/s003820050291
    14 sg:pub.10.1007/s10584-005-6778-2
    15 sg:pub.10.1007/s10651-007-0018-z
    16 sg:pub.10.1038/21164
    17 sg:pub.10.1038/382039a0
    18 sg:pub.10.1038/421891a
    19 sg:pub.10.1038/nature02300
    20 sg:pub.10.1038/nature03089
    21 schema:datePublished 2009-06-28
    22 schema:datePublishedReg 2009-06-28
    23 schema:description The role of anthropogenic forcings in temperature changes during recent decades is investigated over a range of spatial scales. Changes in the annual mean surface temperature and also in the warmest night of the year, which has implications for human health, are considered. Distributions of regional trends with and without the effect of human activity are produced, using constraints from a global optimal detection analysis. Anthropogenic forcings are estimated to have more than doubled the likelihood of mean warming in all regions considered except central North America, where results are more model dependent. The likelihood of warming of the warmest night has also increased, but the estimated change is more uncertain. Inferences on sub-continental scales are indicative rather than definitive because of the absence of locally important forcings and processes in model simulations, as well as model biases. As model inconsistencies may impact regional analyses, a multi-model approach is essential.
    24 schema:genre article
    25 schema:inLanguage en
    26 schema:isAccessibleForFree false
    27 schema:isPartOf Na9d42347e7cb412a8f43753ee7c61ea1
    28 Nd58170cdb01a448683037cb3bc900efa
    29 sg:journal.1049631
    30 schema:keywords America
    31 North America
    32 absence
    33 activity
    34 analysis
    35 annual mean surface temperature
    36 anthropogenic forcing
    37 approach
    38 attribution analysis
    39 biases
    40 central North America
    41 changes
    42 constraints
    43 decades
    44 detection analysis
    45 distribution
    46 effect
    47 estimates
    48 forcing
    49 global optimal detection analysis
    50 health
    51 human activities
    52 human health
    53 implications
    54 important forcing
    55 inconsistencies
    56 inference
    57 likelihood
    58 likelihood of warming
    59 mean surface temperature
    60 model
    61 model biases
    62 model inconsistencies
    63 model simulations
    64 multi-model approach
    65 multi-scale attribution analysis
    66 night
    67 optimal detection analysis
    68 probabilistic estimates
    69 process
    70 range
    71 recent changes
    72 recent decades
    73 region
    74 regional analysis
    75 regional trends
    76 results
    77 role
    78 scale
    79 simulations
    80 spatial scales
    81 sub-continental scale
    82 surface temperature
    83 temperature
    84 temperature changes
    85 trends
    86 warm nights
    87 warming
    88 years
    89 schema:name Probabilistic estimates of recent changes in temperature: a multi-scale attribution analysis
    90 schema:pagination 1139-1156
    91 schema:productId N24d1646196204dddb90cab6119af580d
    92 Nff7f087ab5044a6d88c80ae51e394956
    93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046717939
    94 https://doi.org/10.1007/s00382-009-0615-7
    95 schema:sdDatePublished 2021-11-01T18:13
    96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    97 schema:sdPublisher N83533618ce244005843b2a0de56ac621
    98 schema:url https://doi.org/10.1007/s00382-009-0615-7
    99 sgo:license sg:explorer/license/
    100 sgo:sdDataset articles
    101 rdf:type schema:ScholarlyArticle
    102 N24d1646196204dddb90cab6119af580d schema:name doi
    103 schema:value 10.1007/s00382-009-0615-7
    104 rdf:type schema:PropertyValue
    105 N39c032e3709549b6814fb1f1a257a2af rdf:first sg:person.01100172067.08
    106 rdf:rest Ne2edde046af84b948364921ab75f0bf8
    107 N4e305e2c23df4ca090ff11e21a5b5549 rdf:first sg:person.011356656533.12
    108 rdf:rest N82200a3fe71e42e0b70286437dff3a1a
    109 N669d63f783ae4363b20b0cf9fc7b9c3e rdf:first sg:person.0603650500.31
    110 rdf:rest N4e305e2c23df4ca090ff11e21a5b5549
    111 N82200a3fe71e42e0b70286437dff3a1a rdf:first sg:person.011033746441.19
    112 rdf:rest rdf:nil
    113 N83533618ce244005843b2a0de56ac621 schema:name Springer Nature - SN SciGraph project
    114 rdf:type schema:Organization
    115 Na9d42347e7cb412a8f43753ee7c61ea1 schema:volumeNumber 34
    116 rdf:type schema:PublicationVolume
    117 Nd58170cdb01a448683037cb3bc900efa schema:issueNumber 7-8
    118 rdf:type schema:PublicationIssue
    119 Ne2edde046af84b948364921ab75f0bf8 rdf:first sg:person.015667030077.29
    120 rdf:rest N669d63f783ae4363b20b0cf9fc7b9c3e
    121 Nff7f087ab5044a6d88c80ae51e394956 schema:name dimensions_id
    122 schema:value pub.1046717939
    123 rdf:type schema:PropertyValue
    124 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Earth Sciences
    126 rdf:type schema:DefinedTerm
    127 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Physical Geography and Environmental Geoscience
    129 rdf:type schema:DefinedTerm
    130 sg:grant.7037241 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-009-0615-7
    131 rdf:type schema:MonetaryGrant
    132 sg:journal.1049631 schema:issn 0930-7575
    133 1432-0894
    134 schema:name Climate Dynamics
    135 schema:publisher Springer Nature
    136 rdf:type schema:Periodical
    137 sg:person.01100172067.08 schema:affiliation grid-institutes:grid.17100.37
    138 schema:familyName Christidis
    139 schema:givenName Nikolaos
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100172067.08
    141 rdf:type schema:Person
    142 sg:person.011033746441.19 schema:affiliation grid-institutes:grid.140139.e
    143 schema:familyName Nozawa
    144 schema:givenName Toru
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011033746441.19
    146 rdf:type schema:Person
    147 sg:person.011356656533.12 schema:affiliation grid-institutes:grid.140139.e
    148 schema:familyName Shiogama
    149 schema:givenName Hideo
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011356656533.12
    151 rdf:type schema:Person
    152 sg:person.015667030077.29 schema:affiliation grid-institutes:grid.9435.b
    153 schema:familyName Stott
    154 schema:givenName Peter A.
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667030077.29
    156 rdf:type schema:Person
    157 sg:person.0603650500.31 schema:affiliation grid-institutes:grid.410334.1
    158 schema:familyName Zwiers
    159 schema:givenName Francis W.
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603650500.31
    161 rdf:type schema:Person
    162 sg:pub.10.1007/pl00013733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049849175
    163 https://doi.org/10.1007/pl00013733
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s00382-001-0204-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041946595
    166 https://doi.org/10.1007/s00382-001-0204-x
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s00382-002-0296-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1085138454
    169 https://doi.org/10.1007/s00382-002-0296-y
    170 rdf:type schema:CreativeWork
    171 sg:pub.10.1007/s00382-003-0313-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047305108
    172 https://doi.org/10.1007/s00382-003-0313-9
    173 rdf:type schema:CreativeWork
    174 sg:pub.10.1007/s003820000079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012213043
    175 https://doi.org/10.1007/s003820000079
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s003820050009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002170907
    178 https://doi.org/10.1007/s003820050009
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s003820050010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015242699
    181 https://doi.org/10.1007/s003820050010
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s003820050185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008860100
    184 https://doi.org/10.1007/s003820050185
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/s003820050186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008218600
    187 https://doi.org/10.1007/s003820050186
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/s003820050291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007895196
    190 https://doi.org/10.1007/s003820050291
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/s10584-005-6778-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037417665
    193 https://doi.org/10.1007/s10584-005-6778-2
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/s10651-007-0018-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1014094724
    196 https://doi.org/10.1007/s10651-007-0018-z
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/21164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039310835
    199 https://doi.org/10.1038/21164
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/382039a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029787674
    202 https://doi.org/10.1038/382039a0
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/421891a schema:sameAs https://app.dimensions.ai/details/publication/pub.1003018692
    205 https://doi.org/10.1038/421891a
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nature02300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006979406
    208 https://doi.org/10.1038/nature02300
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/nature03089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028450143
    211 https://doi.org/10.1038/nature03089
    212 rdf:type schema:CreativeWork
    213 grid-institutes:grid.140139.e schema:alternateName National Institute for Environmental Studies, 305-8506, Tsukuba, Ibaraki, Japan
    214 schema:name National Institute for Environmental Studies, 305-8506, Tsukuba, Ibaraki, Japan
    215 rdf:type schema:Organization
    216 grid-institutes:grid.17100.37 schema:alternateName Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK
    217 schema:name Met Office Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK
    218 rdf:type schema:Organization
    219 grid-institutes:grid.410334.1 schema:alternateName Climate Research Division, Environment Canada, M3H 5T4, Toronto, ON, Canada
    220 schema:name Climate Research Division, Environment Canada, M3H 5T4, Toronto, ON, Canada
    221 rdf:type schema:Organization
    222 grid-institutes:grid.9435.b schema:alternateName Met Office Hadley Centre (Reading Unit), Meteorology Building, University of Reading, RG6 6BB, Reading, UK
    223 schema:name Met Office Hadley Centre (Reading Unit), Meteorology Building, University of Reading, RG6 6BB, Reading, UK
    224 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...