Impact of stratospheric variability on tropospheric climate change View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2009-07-18

AUTHORS

Mauro Dall’Amico, Peter A. Stott, Adam A. Scaife, Lesley J. Gray, Karen H. Rosenlof, Alexey Yu. Karpechko

ABSTRACT

An improved stratospheric representation has been included in simulations with the Hadley Centre HadGEM1 coupled ocean atmosphere model with natural and anthropogenic forcings for the period 1979–2003. An improved stratospheric ozone dataset is employed that includes natural variations in ozone as well as the usual anthropogenic trends. In addition, in a second set of simulations the quasi biennial oscillation (QBO) of stratospheric equatorial zonal wind is also imposed using a relaxation towards ERA-40 zonal wind values. The resulting impact on tropospheric variability and trends is described. We show that the modelled cooling rate at the tropopause is enhanced by the improved ozone dataset and this improvement is even more marked when the QBO is also included. The same applies to warming trends in the upper tropical troposphere which are slightly reduced. Our stratospheric improvements produce a significant increase of internal variability but no change in the positive trend of annual mean global mean near-surface temperature. Warming rates are increased significantly over a large portion of the Arctic Ocean. The improved stratospheric representation, especially the QBO relaxation, causes a substantial reduction in near-surface temperature and precipitation response to the El Chichón eruption, especially in the tropical region. The winter increase in the phase of the northern annular mode observed in the aftermath of the two major recent volcanic eruptions is partly captured, especially after the El Chichón eruption. The positive trend in the southern annular mode (SAM) is increased and becomes statistically significant which demonstrates that the observed increase in the SAM is largely subject to internal variability in the stratosphere. The possible inclusion in simulations for future assessments of full ozone chemistry and a gravity wave scheme to internally generate a QBO is discussed. More... »

PAGES

399-417

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-009-0580-1

DOI

http://dx.doi.org/10.1007/s00382-009-0580-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025811460


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Deutsches Zentrum f\u00fcr Luft- und Raumfahrt, Institut f\u00fcr Physik der Atmosph\u00e4re, Oberpfaffenhofen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7551.6", 
          "name": [
            "NCAS Climate, University of Reading, Reading, UK", 
            "Deutsches Zentrum f\u00fcr Luft- und Raumfahrt, Institut f\u00fcr Physik der Atmosph\u00e4re, Oberpfaffenhofen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dall\u2019Amico", 
        "givenName": "Mauro", 
        "id": "sg:person.07703131705.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07703131705.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office Hadley Centre, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office Hadley Centre, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stott", 
        "givenName": "Peter A.", 
        "id": "sg:person.015667030077.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667030077.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office Hadley Centre, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office Hadley Centre, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scaife", 
        "givenName": "Adam A.", 
        "id": "sg:person.0763203455.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763203455.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NCAS Climate, University of Reading, Reading, UK", 
          "id": "http://www.grid.ac/institutes/grid.9435.b", 
          "name": [
            "NCAS Climate, University of Reading, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gray", 
        "givenName": "Lesley J.", 
        "id": "sg:person.01223075500.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223075500.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "NOAA Earth System Research Laboratory, Boulder, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.423024.3", 
          "name": [
            "NOAA Earth System Research Laboratory, Boulder, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rosenlof", 
        "givenName": "Karen H.", 
        "id": "sg:person.014562715313.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014562715313.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, UK", 
          "id": "http://www.grid.ac/institutes/grid.8273.e", 
          "name": [
            "Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karpechko", 
        "givenName": "Alexey Yu.", 
        "id": "sg:person.013501443033.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013501443033.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s003820050292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000168122", 
          "https://doi.org/10.1007/s003820050292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-005-0066-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046003741", 
          "https://doi.org/10.1007/s00382-005-0066-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00007924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044824443", 
          "https://doi.org/10.1007/pl00007924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-009-0604-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052340761", 
          "https://doi.org/10.1007/s00382-009-0604-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-004-0497-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010869841", 
          "https://doi.org/10.1007/s00382-004-0497-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-58541-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033280653", 
          "https://doi.org/10.1007/978-3-642-58541-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-07-18", 
    "datePublishedReg": "2009-07-18", 
    "description": "An improved stratospheric representation has been included in simulations with the Hadley Centre HadGEM1 coupled ocean atmosphere model with natural and anthropogenic forcings for the period 1979\u20132003. An improved stratospheric ozone dataset is employed that includes natural variations in ozone as well as the usual anthropogenic trends. In addition, in a second set of simulations the quasi biennial oscillation (QBO) of stratospheric equatorial zonal wind is also imposed using a relaxation towards ERA-40 zonal wind values. The resulting impact on tropospheric variability and trends is described. We show that the modelled cooling rate at the tropopause is enhanced by the improved ozone dataset and this improvement is even more marked when the QBO is also included. The same applies to warming trends in the upper tropical troposphere which are slightly reduced. Our stratospheric improvements produce a significant increase of internal variability but no change in the positive trend of annual mean global mean near-surface temperature. Warming rates are increased significantly over a large portion of the Arctic Ocean. The improved stratospheric representation, especially the QBO relaxation, causes a substantial reduction in near-surface temperature and precipitation response to the El Chich\u00f3n eruption, especially in the tropical region. The winter increase in the phase of the northern annular mode observed in the aftermath of the two major recent volcanic eruptions is partly captured, especially after the El Chich\u00f3n eruption. The positive trend in the southern annular mode (SAM) is increased and becomes statistically significant which demonstrates that the observed increase in the SAM is largely subject to internal variability in the stratosphere. The possible inclusion in simulations for future assessments of full ozone chemistry and a gravity wave scheme to internally generate a QBO is discussed.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-009-0580-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2787146", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7037241", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "keywords": [
      "Southern Annular Mode", 
      "Quasi Biennial Oscillation", 
      "El Chich\u00f3n eruption", 
      "internal variability", 
      "Annular Mode", 
      "stratospheric representation", 
      "global mean near-surface temperature", 
      "near-surface temperature", 
      "stratospheric equatorial zonal wind", 
      "positive trend", 
      "Ocean Atmosphere Model", 
      "tropospheric climate change", 
      "recent volcanic eruptions", 
      "Northern Annular Mode", 
      "upper tropical troposphere", 
      "ozone datasets", 
      "equatorial zonal wind", 
      "gravity wave scheme", 
      "Arctic Ocean", 
      "precipitation response", 
      "anthropogenic forcing", 
      "tropospheric variability", 
      "volcanic eruptions", 
      "anthropogenic trends", 
      "biennial oscillation", 
      "stratospheric variability", 
      "tropical troposphere", 
      "Atmosphere Model", 
      "warming rate", 
      "surface temperature", 
      "zonal wind", 
      "climate change", 
      "winter increase", 
      "eruption", 
      "ozone chemistry", 
      "tropical regions", 
      "wind values", 
      "variability", 
      "natural variation", 
      "large portion", 
      "wave scheme", 
      "future assessments", 
      "observed increase", 
      "trends", 
      "HadGEM1", 
      "Ocean", 
      "forcing", 
      "troposphere", 
      "tropopause", 
      "wind", 
      "stratosphere", 
      "temperature", 
      "datasets", 
      "oscillations", 
      "chemistry", 
      "simulations", 
      "changes", 
      "variation", 
      "impact", 
      "region", 
      "ozone", 
      "portion", 
      "second set", 
      "inclusion", 
      "increase", 
      "phase", 
      "aftermath", 
      "substantial reduction", 
      "model", 
      "rate", 
      "mode", 
      "values", 
      "representation", 
      "assessment", 
      "set", 
      "response", 
      "significant increase", 
      "scheme", 
      "addition", 
      "reduction", 
      "relaxation", 
      "possible inclusion", 
      "improvement", 
      "improved stratospheric representation", 
      "Hadley Centre HadGEM1", 
      "Centre HadGEM1", 
      "improved stratospheric ozone dataset", 
      "stratospheric ozone dataset", 
      "usual anthropogenic trends", 
      "zonal wind values", 
      "improved ozone dataset", 
      "stratospheric improvements", 
      "annual mean global mean near-surface temperature", 
      "mean global mean near-surface temperature", 
      "mean near-surface temperature", 
      "QBO relaxation", 
      "Chich\u00f3n eruption", 
      "major recent volcanic eruptions", 
      "full ozone chemistry"
    ], 
    "name": "Impact of stratospheric variability on tropospheric climate change", 
    "pagination": "399-417", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025811460"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-009-0580-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-009-0580-1", 
      "https://app.dimensions.ai/details/publication/pub.1025811460"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_490.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-009-0580-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-009-0580-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-009-0580-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-009-0580-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-009-0580-1'


 

This table displays all metadata directly associated to this object as RDF triples.

237 TRIPLES      22 PREDICATES      131 URIs      116 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-009-0580-1 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0405
4 schema:author Ne5f55fc37ed74f7db523c2ccd95f5f6f
5 schema:citation sg:pub.10.1007/978-3-642-58541-8
6 sg:pub.10.1007/pl00007924
7 sg:pub.10.1007/s00382-004-0497-7
8 sg:pub.10.1007/s00382-005-0066-8
9 sg:pub.10.1007/s00382-009-0604-x
10 sg:pub.10.1007/s003820050292
11 schema:datePublished 2009-07-18
12 schema:datePublishedReg 2009-07-18
13 schema:description An improved stratospheric representation has been included in simulations with the Hadley Centre HadGEM1 coupled ocean atmosphere model with natural and anthropogenic forcings for the period 1979–2003. An improved stratospheric ozone dataset is employed that includes natural variations in ozone as well as the usual anthropogenic trends. In addition, in a second set of simulations the quasi biennial oscillation (QBO) of stratospheric equatorial zonal wind is also imposed using a relaxation towards ERA-40 zonal wind values. The resulting impact on tropospheric variability and trends is described. We show that the modelled cooling rate at the tropopause is enhanced by the improved ozone dataset and this improvement is even more marked when the QBO is also included. The same applies to warming trends in the upper tropical troposphere which are slightly reduced. Our stratospheric improvements produce a significant increase of internal variability but no change in the positive trend of annual mean global mean near-surface temperature. Warming rates are increased significantly over a large portion of the Arctic Ocean. The improved stratospheric representation, especially the QBO relaxation, causes a substantial reduction in near-surface temperature and precipitation response to the El Chichón eruption, especially in the tropical region. The winter increase in the phase of the northern annular mode observed in the aftermath of the two major recent volcanic eruptions is partly captured, especially after the El Chichón eruption. The positive trend in the southern annular mode (SAM) is increased and becomes statistically significant which demonstrates that the observed increase in the SAM is largely subject to internal variability in the stratosphere. The possible inclusion in simulations for future assessments of full ozone chemistry and a gravity wave scheme to internally generate a QBO is discussed.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N4b7330939de54bc0890c7354c7429fb8
18 N9e298f81f034413b9ffde9fe8ca46507
19 sg:journal.1049631
20 schema:keywords Annular Mode
21 Arctic Ocean
22 Atmosphere Model
23 Centre HadGEM1
24 Chichón eruption
25 El Chichón eruption
26 HadGEM1
27 Hadley Centre HadGEM1
28 Northern Annular Mode
29 Ocean
30 Ocean Atmosphere Model
31 QBO relaxation
32 Quasi Biennial Oscillation
33 Southern Annular Mode
34 addition
35 aftermath
36 annual mean global mean near-surface temperature
37 anthropogenic forcing
38 anthropogenic trends
39 assessment
40 biennial oscillation
41 changes
42 chemistry
43 climate change
44 datasets
45 equatorial zonal wind
46 eruption
47 forcing
48 full ozone chemistry
49 future assessments
50 global mean near-surface temperature
51 gravity wave scheme
52 impact
53 improved ozone dataset
54 improved stratospheric ozone dataset
55 improved stratospheric representation
56 improvement
57 inclusion
58 increase
59 internal variability
60 large portion
61 major recent volcanic eruptions
62 mean global mean near-surface temperature
63 mean near-surface temperature
64 mode
65 model
66 natural variation
67 near-surface temperature
68 observed increase
69 oscillations
70 ozone
71 ozone chemistry
72 ozone datasets
73 phase
74 portion
75 positive trend
76 possible inclusion
77 precipitation response
78 rate
79 recent volcanic eruptions
80 reduction
81 region
82 relaxation
83 representation
84 response
85 scheme
86 second set
87 set
88 significant increase
89 simulations
90 stratosphere
91 stratospheric equatorial zonal wind
92 stratospheric improvements
93 stratospheric ozone dataset
94 stratospheric representation
95 stratospheric variability
96 substantial reduction
97 surface temperature
98 temperature
99 trends
100 tropical regions
101 tropical troposphere
102 tropopause
103 troposphere
104 tropospheric climate change
105 tropospheric variability
106 upper tropical troposphere
107 usual anthropogenic trends
108 values
109 variability
110 variation
111 volcanic eruptions
112 warming rate
113 wave scheme
114 wind
115 wind values
116 winter increase
117 zonal wind
118 zonal wind values
119 schema:name Impact of stratospheric variability on tropospheric climate change
120 schema:pagination 399-417
121 schema:productId N99cd4e18f508492989473d1f54b943a2
122 Nf6fe816c0d524bdf9164f61bab81c849
123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025811460
124 https://doi.org/10.1007/s00382-009-0580-1
125 schema:sdDatePublished 2021-12-01T19:22
126 schema:sdLicense https://scigraph.springernature.com/explorer/license/
127 schema:sdPublisher N3b410b3ec2e8427a9861422ccabc3428
128 schema:url https://doi.org/10.1007/s00382-009-0580-1
129 sgo:license sg:explorer/license/
130 sgo:sdDataset articles
131 rdf:type schema:ScholarlyArticle
132 N3b410b3ec2e8427a9861422ccabc3428 schema:name Springer Nature - SN SciGraph project
133 rdf:type schema:Organization
134 N44e49b2040cd48e692629f6c24cde7bb rdf:first sg:person.013501443033.86
135 rdf:rest rdf:nil
136 N4b7330939de54bc0890c7354c7429fb8 schema:issueNumber 2-3
137 rdf:type schema:PublicationIssue
138 N7eaaf51f5e454d49b6fa7fed15da9afc rdf:first sg:person.015667030077.29
139 rdf:rest Na01df9e3cf7d4b659f1542fa168b5863
140 N99cd4e18f508492989473d1f54b943a2 schema:name doi
141 schema:value 10.1007/s00382-009-0580-1
142 rdf:type schema:PropertyValue
143 N9e298f81f034413b9ffde9fe8ca46507 schema:volumeNumber 34
144 rdf:type schema:PublicationVolume
145 Na01df9e3cf7d4b659f1542fa168b5863 rdf:first sg:person.0763203455.88
146 rdf:rest Nf8820b3d05d94d7f83717753b43b26fb
147 Nad606b0d498b4fed82294f278f79faa7 rdf:first sg:person.014562715313.81
148 rdf:rest N44e49b2040cd48e692629f6c24cde7bb
149 Ne5f55fc37ed74f7db523c2ccd95f5f6f rdf:first sg:person.07703131705.41
150 rdf:rest N7eaaf51f5e454d49b6fa7fed15da9afc
151 Nf6fe816c0d524bdf9164f61bab81c849 schema:name dimensions_id
152 schema:value pub.1025811460
153 rdf:type schema:PropertyValue
154 Nf8820b3d05d94d7f83717753b43b26fb rdf:first sg:person.01223075500.15
155 rdf:rest Nad606b0d498b4fed82294f278f79faa7
156 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
157 schema:name Earth Sciences
158 rdf:type schema:DefinedTerm
159 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
160 schema:name Atmospheric Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
163 schema:name Oceanography
164 rdf:type schema:DefinedTerm
165 sg:grant.2787146 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-009-0580-1
166 rdf:type schema:MonetaryGrant
167 sg:grant.7037241 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-009-0580-1
168 rdf:type schema:MonetaryGrant
169 sg:journal.1049631 schema:issn 0930-7575
170 1432-0894
171 schema:name Climate Dynamics
172 schema:publisher Springer Nature
173 rdf:type schema:Periodical
174 sg:person.01223075500.15 schema:affiliation grid-institutes:grid.9435.b
175 schema:familyName Gray
176 schema:givenName Lesley J.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223075500.15
178 rdf:type schema:Person
179 sg:person.013501443033.86 schema:affiliation grid-institutes:grid.8273.e
180 schema:familyName Karpechko
181 schema:givenName Alexey Yu.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013501443033.86
183 rdf:type schema:Person
184 sg:person.014562715313.81 schema:affiliation grid-institutes:grid.423024.3
185 schema:familyName Rosenlof
186 schema:givenName Karen H.
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014562715313.81
188 rdf:type schema:Person
189 sg:person.015667030077.29 schema:affiliation grid-institutes:grid.17100.37
190 schema:familyName Stott
191 schema:givenName Peter A.
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667030077.29
193 rdf:type schema:Person
194 sg:person.0763203455.88 schema:affiliation grid-institutes:grid.17100.37
195 schema:familyName Scaife
196 schema:givenName Adam A.
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763203455.88
198 rdf:type schema:Person
199 sg:person.07703131705.41 schema:affiliation grid-institutes:grid.7551.6
200 schema:familyName Dall’Amico
201 schema:givenName Mauro
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07703131705.41
203 rdf:type schema:Person
204 sg:pub.10.1007/978-3-642-58541-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033280653
205 https://doi.org/10.1007/978-3-642-58541-8
206 rdf:type schema:CreativeWork
207 sg:pub.10.1007/pl00007924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044824443
208 https://doi.org/10.1007/pl00007924
209 rdf:type schema:CreativeWork
210 sg:pub.10.1007/s00382-004-0497-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010869841
211 https://doi.org/10.1007/s00382-004-0497-7
212 rdf:type schema:CreativeWork
213 sg:pub.10.1007/s00382-005-0066-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046003741
214 https://doi.org/10.1007/s00382-005-0066-8
215 rdf:type schema:CreativeWork
216 sg:pub.10.1007/s00382-009-0604-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052340761
217 https://doi.org/10.1007/s00382-009-0604-x
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/s003820050292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000168122
220 https://doi.org/10.1007/s003820050292
221 rdf:type schema:CreativeWork
222 grid-institutes:grid.17100.37 schema:alternateName Met Office Hadley Centre, Exeter, UK
223 schema:name Met Office Hadley Centre, Exeter, UK
224 rdf:type schema:Organization
225 grid-institutes:grid.423024.3 schema:alternateName NOAA Earth System Research Laboratory, Boulder, CO, USA
226 schema:name NOAA Earth System Research Laboratory, Boulder, CO, USA
227 rdf:type schema:Organization
228 grid-institutes:grid.7551.6 schema:alternateName Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
229 schema:name Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
230 NCAS Climate, University of Reading, Reading, UK
231 rdf:type schema:Organization
232 grid-institutes:grid.8273.e schema:alternateName Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, UK
233 schema:name Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, UK
234 rdf:type schema:Organization
235 grid-institutes:grid.9435.b schema:alternateName NCAS Climate, University of Reading, Reading, UK
236 schema:name NCAS Climate, University of Reading, Reading, UK
237 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...