Response of the Western European climate to a collapse of the thermohaline circulation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-01-29

AUTHORS

A. Laurian, S. S. Drijfhout, W. Hazeleger, B. van den Hurk

ABSTRACT

Two ensemble simulations with the ECHAM5/MPI-OM climate model have been investigated for the atmospheric response to a thermohaline circulation (THC) collapse. The model forcing was specified from observations between 1950 and 2000 and it followed a rising greenhouse gases emission scenario from 2001 to 2100. In one ensemble, a THC collapse was induced by adding freshwater in the northern North Atlantic, from 2001 onwards. After about 20 years, an almost stationary response pattern develops, that is, after the THC collapse, global mean temperature rises equally fast in both ensembles with the hosing ensemble displaying a constant offset. The atmospheric response to the freshwater hosing features a strong zonal gradient in the anomalous 2-m air temperature over Western Europe, associated with a strong land–sea contrast. Since Western Europe climate features a strong marine impact due to the prevailing westerlies, the question arises how such a strong land–sea contrast can be maintained. We show that a strong secondary cloud response is set up with increased cloud cover over sea and decreased cloud cover over land. Also, the marine impact on Western European climate decreases, which results from a reduced transport of moist static energy from sea to land. As a result, the change in lapse rate over the cold sea surface temperature (SST) anomalies west of the continent is much larger than over land, dominated by changes in moisture content rather than temperature. More... »

PAGES

689-697

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-008-0513-4

DOI

http://dx.doi.org/10.1007/s00382-008-0513-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027787861


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "KNMI, Royal Netherlands Meteorological Institute, De Bilt, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "KNMI, Royal Netherlands Meteorological Institute, De Bilt, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laurian", 
        "givenName": "A.", 
        "id": "sg:person.014361727737.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014361727737.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "KNMI, Royal Netherlands Meteorological Institute, De Bilt, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "KNMI, Royal Netherlands Meteorological Institute, De Bilt, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drijfhout", 
        "givenName": "S. S.", 
        "id": "sg:person.014016535431.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014016535431.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "KNMI, Royal Netherlands Meteorological Institute, De Bilt, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "KNMI, Royal Netherlands Meteorological Institute, De Bilt, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hazeleger", 
        "givenName": "W.", 
        "id": "sg:person.011535450107.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011535450107.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "KNMI, Royal Netherlands Meteorological Institute, De Bilt, The Netherlands", 
          "id": "http://www.grid.ac/institutes/grid.8653.8", 
          "name": [
            "KNMI, Royal Netherlands Meteorological Institute, De Bilt, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van den Hurk", 
        "givenName": "B.", 
        "id": "sg:person.010707714545.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707714545.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ngeo218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028766802", 
          "https://doi.org/10.1038/ngeo218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-007-0306-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002755636", 
          "https://doi.org/10.1007/s00382-007-0306-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048640802", 
          "https://doi.org/10.1038/nature04385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-006-9146-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016910488", 
          "https://doi.org/10.1007/s10584-006-9146-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016168827653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046187375", 
          "https://doi.org/10.1023/a:1016168827653"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-01-29", 
    "datePublishedReg": "2009-01-29", 
    "description": "Two ensemble simulations with the ECHAM5/MPI-OM climate model have been investigated for the atmospheric response to a thermohaline circulation (THC) collapse. The model forcing was specified from observations between 1950 and 2000 and it followed a rising greenhouse gases emission scenario from 2001 to 2100. In one ensemble, a THC collapse was induced by adding freshwater in the northern North Atlantic, from 2001 onwards. After about 20\u00a0years, an almost stationary response pattern develops, that is, after the THC collapse, global mean temperature rises equally fast in both ensembles with the hosing ensemble displaying a constant offset. The atmospheric response to the freshwater hosing features a strong zonal gradient in the anomalous 2-m air temperature over Western Europe, associated with a strong land\u2013sea contrast. Since Western Europe climate features a strong marine impact due to the prevailing westerlies, the question arises how such a strong land\u2013sea contrast can be maintained. We show that a strong secondary cloud response is set up with increased cloud cover over sea and decreased cloud cover over land. Also, the marine impact on Western European climate decreases, which results from a reduced transport of moist static energy from sea to land. As a result, the change in lapse rate over the cold sea surface temperature (SST) anomalies west of the continent is much larger than over land, dominated by changes in moisture content rather than temperature.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-008-0513-4", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "34"
      }
    ], 
    "keywords": [
      "strong land\u2013sea contrast", 
      "land\u2013sea contrast", 
      "sea surface temperature", 
      "THC collapse", 
      "atmospheric response", 
      "marine impacts", 
      "cloud cover", 
      "ECHAM5/MPI-OM climate model", 
      "cold sea surface temperatures", 
      "greenhouse gases emission scenarios", 
      "thermohaline circulation collapse", 
      "northern North Atlantic", 
      "strong zonal gradient", 
      "global mean temperature", 
      "moist static energy", 
      "Western European climate", 
      "thermohaline circulation", 
      "climate models", 
      "cloud response", 
      "model forcing", 
      "North Atlantic", 
      "zonal gradient", 
      "ensemble simulations", 
      "emission scenarios", 
      "lapse rate", 
      "circulation collapse", 
      "static energy", 
      "surface temperature", 
      "European climate", 
      "Europe climate", 
      "air temperature", 
      "freshwater", 
      "mean temperature", 
      "constant offset", 
      "Sea", 
      "climate", 
      "land", 
      "cover", 
      "Western Europe", 
      "ensemble", 
      "collapse", 
      "westerlies", 
      "forcing", 
      "Atlantic", 
      "continent", 
      "West", 
      "hosing", 
      "moisture content", 
      "circulation", 
      "temperature", 
      "offset", 
      "transport", 
      "gradient", 
      "changes", 
      "impact", 
      "Europe", 
      "scenarios", 
      "contrast", 
      "patterns", 
      "response patterns", 
      "simulations", 
      "content", 
      "model", 
      "response", 
      "years", 
      "decrease", 
      "rate", 
      "results", 
      "energy", 
      "questions", 
      "observations"
    ], 
    "name": "Response of the Western European climate to a collapse of the thermohaline circulation", 
    "pagination": "689-697", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027787861"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-008-0513-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-008-0513-4", 
      "https://app.dimensions.ai/details/publication/pub.1027787861"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_490.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-008-0513-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-008-0513-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-008-0513-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-008-0513-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-008-0513-4'


 

This table displays all metadata directly associated to this object as RDF triples.

169 TRIPLES      21 PREDICATES      100 URIs      87 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-008-0513-4 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N70b6ad756b68424387efd92848ee7f40
4 schema:citation sg:pub.10.1007/s00382-007-0306-1
5 sg:pub.10.1007/s10584-006-9146-y
6 sg:pub.10.1023/a:1016168827653
7 sg:pub.10.1038/nature04385
8 sg:pub.10.1038/ngeo218
9 schema:datePublished 2009-01-29
10 schema:datePublishedReg 2009-01-29
11 schema:description Two ensemble simulations with the ECHAM5/MPI-OM climate model have been investigated for the atmospheric response to a thermohaline circulation (THC) collapse. The model forcing was specified from observations between 1950 and 2000 and it followed a rising greenhouse gases emission scenario from 2001 to 2100. In one ensemble, a THC collapse was induced by adding freshwater in the northern North Atlantic, from 2001 onwards. After about 20 years, an almost stationary response pattern develops, that is, after the THC collapse, global mean temperature rises equally fast in both ensembles with the hosing ensemble displaying a constant offset. The atmospheric response to the freshwater hosing features a strong zonal gradient in the anomalous 2-m air temperature over Western Europe, associated with a strong land–sea contrast. Since Western Europe climate features a strong marine impact due to the prevailing westerlies, the question arises how such a strong land–sea contrast can be maintained. We show that a strong secondary cloud response is set up with increased cloud cover over sea and decreased cloud cover over land. Also, the marine impact on Western European climate decreases, which results from a reduced transport of moist static energy from sea to land. As a result, the change in lapse rate over the cold sea surface temperature (SST) anomalies west of the continent is much larger than over land, dominated by changes in moisture content rather than temperature.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf Na9def50cb92445e4b7fb63011bda4ccc
15 Naf8a603276a44581805943d68d803380
16 sg:journal.1049631
17 schema:keywords Atlantic
18 ECHAM5/MPI-OM climate model
19 Europe
20 Europe climate
21 European climate
22 North Atlantic
23 Sea
24 THC collapse
25 West
26 Western Europe
27 Western European climate
28 air temperature
29 atmospheric response
30 changes
31 circulation
32 circulation collapse
33 climate
34 climate models
35 cloud cover
36 cloud response
37 cold sea surface temperatures
38 collapse
39 constant offset
40 content
41 continent
42 contrast
43 cover
44 decrease
45 emission scenarios
46 energy
47 ensemble
48 ensemble simulations
49 forcing
50 freshwater
51 global mean temperature
52 gradient
53 greenhouse gases emission scenarios
54 hosing
55 impact
56 land
57 land–sea contrast
58 lapse rate
59 marine impacts
60 mean temperature
61 model
62 model forcing
63 moist static energy
64 moisture content
65 northern North Atlantic
66 observations
67 offset
68 patterns
69 questions
70 rate
71 response
72 response patterns
73 results
74 scenarios
75 sea surface temperature
76 simulations
77 static energy
78 strong land–sea contrast
79 strong zonal gradient
80 surface temperature
81 temperature
82 thermohaline circulation
83 thermohaline circulation collapse
84 transport
85 westerlies
86 years
87 zonal gradient
88 schema:name Response of the Western European climate to a collapse of the thermohaline circulation
89 schema:pagination 689-697
90 schema:productId Na370fd641d0949de97f9cbcd7654c762
91 Nf8a855b17b6e4f89b8f05e28347bae58
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027787861
93 https://doi.org/10.1007/s00382-008-0513-4
94 schema:sdDatePublished 2022-10-01T06:35
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher N8b04d07eda684f3e980c79f017aa31ea
97 schema:url https://doi.org/10.1007/s00382-008-0513-4
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N290954345f95458f812425a29cbb0698 rdf:first sg:person.014016535431.06
102 rdf:rest N62049579f5664e09b845e3ec8b0076dd
103 N62049579f5664e09b845e3ec8b0076dd rdf:first sg:person.011535450107.75
104 rdf:rest N7ae29f6d6e75450bacd0f171f46cc2fc
105 N70b6ad756b68424387efd92848ee7f40 rdf:first sg:person.014361727737.08
106 rdf:rest N290954345f95458f812425a29cbb0698
107 N7ae29f6d6e75450bacd0f171f46cc2fc rdf:first sg:person.010707714545.84
108 rdf:rest rdf:nil
109 N8b04d07eda684f3e980c79f017aa31ea schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 Na370fd641d0949de97f9cbcd7654c762 schema:name doi
112 schema:value 10.1007/s00382-008-0513-4
113 rdf:type schema:PropertyValue
114 Na9def50cb92445e4b7fb63011bda4ccc schema:volumeNumber 34
115 rdf:type schema:PublicationVolume
116 Naf8a603276a44581805943d68d803380 schema:issueNumber 5
117 rdf:type schema:PublicationIssue
118 Nf8a855b17b6e4f89b8f05e28347bae58 schema:name dimensions_id
119 schema:value pub.1027787861
120 rdf:type schema:PropertyValue
121 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
122 schema:name Earth Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
125 schema:name Atmospheric Sciences
126 rdf:type schema:DefinedTerm
127 sg:journal.1049631 schema:issn 0930-7575
128 1432-0894
129 schema:name Climate Dynamics
130 schema:publisher Springer Nature
131 rdf:type schema:Periodical
132 sg:person.010707714545.84 schema:affiliation grid-institutes:grid.8653.8
133 schema:familyName van den Hurk
134 schema:givenName B.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010707714545.84
136 rdf:type schema:Person
137 sg:person.011535450107.75 schema:affiliation grid-institutes:grid.8653.8
138 schema:familyName Hazeleger
139 schema:givenName W.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011535450107.75
141 rdf:type schema:Person
142 sg:person.014016535431.06 schema:affiliation grid-institutes:grid.8653.8
143 schema:familyName Drijfhout
144 schema:givenName S. S.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014016535431.06
146 rdf:type schema:Person
147 sg:person.014361727737.08 schema:affiliation grid-institutes:grid.8653.8
148 schema:familyName Laurian
149 schema:givenName A.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014361727737.08
151 rdf:type schema:Person
152 sg:pub.10.1007/s00382-007-0306-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002755636
153 https://doi.org/10.1007/s00382-007-0306-1
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s10584-006-9146-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1016910488
156 https://doi.org/10.1007/s10584-006-9146-y
157 rdf:type schema:CreativeWork
158 sg:pub.10.1023/a:1016168827653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046187375
159 https://doi.org/10.1023/a:1016168827653
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nature04385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048640802
162 https://doi.org/10.1038/nature04385
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/ngeo218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028766802
165 https://doi.org/10.1038/ngeo218
166 rdf:type schema:CreativeWork
167 grid-institutes:grid.8653.8 schema:alternateName KNMI, Royal Netherlands Meteorological Institute, De Bilt, The Netherlands
168 schema:name KNMI, Royal Netherlands Meteorological Institute, De Bilt, The Netherlands
169 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...