Climate response to the physiological impact of carbon dioxide on plants in the Met Office Unified Model HadCM3 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-09-09

AUTHORS

Olivier Boucher, Andy Jones, Richard A. Betts

ABSTRACT

The concentration of carbon dioxide in the atmosphere acts to control the stomatal conductance of plants. There is observational and modelling evidence that an increase in the atmospheric concentration of CO2 would suppress the evapotranspiration (ET) rate over land. This process is known as CO2 physiological forcing and has been shown to induce changes in surface temperature and continental runoff. We analyse two transient climate simulations for the twenty-first century to isolate the climate response to the CO2 physiological forcing. The land surface warming associated with the decreased ET rate is accompanied by an increase in the atmospheric lapse rate, an increase in specific humidity, but a decrease in relative humidity and stratiform cloud over land. We find that the water vapour feedback more than compensates for the decrease in latent heat flux over land as far as the budget of atmospheric water vapour is concerned. There is evidence that surface snow, water vapour and cloudiness respond to the CO2 physiological forcing and all contribute to further warm the climate system. The climate response to the CO2 physiological forcing has a quite different signature to that from the CO2 radiative forcing, especially in terms of the changes in the temperature vertical profile and surface energy budget over land. More... »

PAGES

237-249

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-008-0459-6

DOI

http://dx.doi.org/10.1007/s00382-008-0459-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033419554


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Met Office, Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office, Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boucher", 
        "givenName": "Olivier", 
        "id": "sg:person.01301253676.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301253676.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office, Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office, Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jones", 
        "givenName": "Andy", 
        "id": "sg:person.012221732337.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012221732337.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office, Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office, Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Betts", 
        "givenName": "Richard A.", 
        "id": "sg:person.01362076543.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362076543.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/42924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007351501", 
          "https://doi.org/10.1038/42924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-007-0306-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002755636", 
          "https://doi.org/10.1007/s00382-007-0306-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018345935", 
          "https://doi.org/10.1007/s003820050276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021061618", 
          "https://doi.org/10.1038/nature04504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015242699", 
          "https://doi.org/10.1007/s003820050010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-006-9104-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009013393", 
          "https://doi.org/10.1007/s10584-006-9104-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044599907", 
          "https://doi.org/10.1038/nature06045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-004-0402-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000675318", 
          "https://doi.org/10.1007/s00382-004-0402-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-09-09", 
    "datePublishedReg": "2008-09-09", 
    "description": "The concentration of carbon dioxide in the atmosphere acts to control the stomatal conductance of plants. There is observational and modelling evidence that an increase in the atmospheric concentration of CO2 would suppress the evapotranspiration (ET) rate over land. This process is known as CO2 physiological forcing and has been shown to induce changes in surface temperature and continental runoff. We analyse two transient climate simulations for the twenty-first century to isolate the climate response to the CO2 physiological forcing. The land surface warming associated with the decreased ET rate is accompanied by an increase in the atmospheric lapse rate, an increase in specific humidity, but a decrease in relative humidity and stratiform cloud over land. We find that the water vapour feedback more than compensates for the decrease in latent heat flux over land as far as the budget of atmospheric water vapour is concerned. There is evidence that surface snow, water vapour and cloudiness respond to the CO2 physiological forcing and all contribute to further warm the climate system. The climate response to the CO2 physiological forcing has a quite different signature to that from the CO2 radiative forcing, especially in terms of the changes in the temperature vertical profile and surface energy budget over land.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-008-0459-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7037241", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "keywords": [
      "CO2 physiological forcing", 
      "climate response", 
      "physiological forcing", 
      "water vapor", 
      "transient climate simulations", 
      "land surface warming", 
      "atmospheric lapse rate", 
      "CO2 radiative forcing", 
      "latent heat flux", 
      "atmospheric water vapor", 
      "temperature vertical profiles", 
      "continental runoff", 
      "climate simulations", 
      "surface warming", 
      "climate system", 
      "specific humidity", 
      "radiative forcing", 
      "Met Office", 
      "surface snow", 
      "lapse rate", 
      "carbon dioxide", 
      "vertical profiles", 
      "atmospheric concentrations", 
      "surface temperature", 
      "evapotranspiration rates", 
      "forcing", 
      "energy budget", 
      "heat flux", 
      "ET rates", 
      "land", 
      "relative humidity", 
      "different signatures", 
      "twenty-first century", 
      "budget", 
      "vapor", 
      "CO2", 
      "humidity", 
      "HadCM3", 
      "runoff", 
      "warming", 
      "snow", 
      "atmosphere", 
      "dioxide", 
      "flux", 
      "cloud", 
      "signatures", 
      "changes", 
      "concentration", 
      "century", 
      "evidence", 
      "temperature", 
      "increase", 
      "decrease", 
      "stomatal conductance", 
      "profile", 
      "impact", 
      "simulations", 
      "rate", 
      "process", 
      "response", 
      "respond", 
      "physiological impact", 
      "plants", 
      "system", 
      "compensates", 
      "terms", 
      "conductance", 
      "office"
    ], 
    "name": "Climate response to the physiological impact of carbon dioxide on plants in the Met Office Unified Model HadCM3", 
    "pagination": "237-249", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033419554"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-008-0459-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-008-0459-6", 
      "https://app.dimensions.ai/details/publication/pub.1033419554"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_461.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-008-0459-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-008-0459-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-008-0459-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-008-0459-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-008-0459-6'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      22 PREDICATES      101 URIs      85 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-008-0459-6 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N21723fd9985e41ffa4d71c409ec8a38e
4 schema:citation sg:pub.10.1007/s00382-004-0402-4
5 sg:pub.10.1007/s00382-007-0306-1
6 sg:pub.10.1007/s003820050010
7 sg:pub.10.1007/s003820050276
8 sg:pub.10.1007/s10584-006-9104-8
9 sg:pub.10.1038/42924
10 sg:pub.10.1038/nature04504
11 sg:pub.10.1038/nature06045
12 schema:datePublished 2008-09-09
13 schema:datePublishedReg 2008-09-09
14 schema:description The concentration of carbon dioxide in the atmosphere acts to control the stomatal conductance of plants. There is observational and modelling evidence that an increase in the atmospheric concentration of CO2 would suppress the evapotranspiration (ET) rate over land. This process is known as CO2 physiological forcing and has been shown to induce changes in surface temperature and continental runoff. We analyse two transient climate simulations for the twenty-first century to isolate the climate response to the CO2 physiological forcing. The land surface warming associated with the decreased ET rate is accompanied by an increase in the atmospheric lapse rate, an increase in specific humidity, but a decrease in relative humidity and stratiform cloud over land. We find that the water vapour feedback more than compensates for the decrease in latent heat flux over land as far as the budget of atmospheric water vapour is concerned. There is evidence that surface snow, water vapour and cloudiness respond to the CO2 physiological forcing and all contribute to further warm the climate system. The climate response to the CO2 physiological forcing has a quite different signature to that from the CO2 radiative forcing, especially in terms of the changes in the temperature vertical profile and surface energy budget over land.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N9db2e767ef904a98a7c7fd9f47a1db2e
19 Ncfc2baf299f74b68ae2783f29bffe9b4
20 sg:journal.1049631
21 schema:keywords CO2
22 CO2 physiological forcing
23 CO2 radiative forcing
24 ET rates
25 HadCM3
26 Met Office
27 atmosphere
28 atmospheric concentrations
29 atmospheric lapse rate
30 atmospheric water vapor
31 budget
32 carbon dioxide
33 century
34 changes
35 climate response
36 climate simulations
37 climate system
38 cloud
39 compensates
40 concentration
41 conductance
42 continental runoff
43 decrease
44 different signatures
45 dioxide
46 energy budget
47 evapotranspiration rates
48 evidence
49 flux
50 forcing
51 heat flux
52 humidity
53 impact
54 increase
55 land
56 land surface warming
57 lapse rate
58 latent heat flux
59 office
60 physiological forcing
61 physiological impact
62 plants
63 process
64 profile
65 radiative forcing
66 rate
67 relative humidity
68 respond
69 response
70 runoff
71 signatures
72 simulations
73 snow
74 specific humidity
75 stomatal conductance
76 surface snow
77 surface temperature
78 surface warming
79 system
80 temperature
81 temperature vertical profiles
82 terms
83 transient climate simulations
84 twenty-first century
85 vapor
86 vertical profiles
87 warming
88 water vapor
89 schema:name Climate response to the physiological impact of carbon dioxide on plants in the Met Office Unified Model HadCM3
90 schema:pagination 237-249
91 schema:productId N17b62f0a544044e1a7b0a858c1690252
92 Nbd514f2ffee54d7f84e1a55bfdb2d7c4
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033419554
94 https://doi.org/10.1007/s00382-008-0459-6
95 schema:sdDatePublished 2022-05-20T07:24
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher Nf979428cf0254e248fe5ac306318ffc5
98 schema:url https://doi.org/10.1007/s00382-008-0459-6
99 sgo:license sg:explorer/license/
100 sgo:sdDataset articles
101 rdf:type schema:ScholarlyArticle
102 N17b62f0a544044e1a7b0a858c1690252 schema:name doi
103 schema:value 10.1007/s00382-008-0459-6
104 rdf:type schema:PropertyValue
105 N21723fd9985e41ffa4d71c409ec8a38e rdf:first sg:person.01301253676.11
106 rdf:rest Ncdc6f82c53fa4653a998f23a6afc66cd
107 N3ef3236e8b2c4c6295e509d41846cb52 rdf:first sg:person.01362076543.08
108 rdf:rest rdf:nil
109 N9db2e767ef904a98a7c7fd9f47a1db2e schema:issueNumber 2-3
110 rdf:type schema:PublicationIssue
111 Nbd514f2ffee54d7f84e1a55bfdb2d7c4 schema:name dimensions_id
112 schema:value pub.1033419554
113 rdf:type schema:PropertyValue
114 Ncdc6f82c53fa4653a998f23a6afc66cd rdf:first sg:person.012221732337.99
115 rdf:rest N3ef3236e8b2c4c6295e509d41846cb52
116 Ncfc2baf299f74b68ae2783f29bffe9b4 schema:volumeNumber 32
117 rdf:type schema:PublicationVolume
118 Nf979428cf0254e248fe5ac306318ffc5 schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
121 schema:name Earth Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
124 schema:name Atmospheric Sciences
125 rdf:type schema:DefinedTerm
126 sg:grant.7037241 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-008-0459-6
127 rdf:type schema:MonetaryGrant
128 sg:journal.1049631 schema:issn 0930-7575
129 1432-0894
130 schema:name Climate Dynamics
131 schema:publisher Springer Nature
132 rdf:type schema:Periodical
133 sg:person.012221732337.99 schema:affiliation grid-institutes:grid.17100.37
134 schema:familyName Jones
135 schema:givenName Andy
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012221732337.99
137 rdf:type schema:Person
138 sg:person.01301253676.11 schema:affiliation grid-institutes:grid.17100.37
139 schema:familyName Boucher
140 schema:givenName Olivier
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301253676.11
142 rdf:type schema:Person
143 sg:person.01362076543.08 schema:affiliation grid-institutes:grid.17100.37
144 schema:familyName Betts
145 schema:givenName Richard A.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362076543.08
147 rdf:type schema:Person
148 sg:pub.10.1007/s00382-004-0402-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000675318
149 https://doi.org/10.1007/s00382-004-0402-4
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s00382-007-0306-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002755636
152 https://doi.org/10.1007/s00382-007-0306-1
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s003820050010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015242699
155 https://doi.org/10.1007/s003820050010
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s003820050276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018345935
158 https://doi.org/10.1007/s003820050276
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s10584-006-9104-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009013393
161 https://doi.org/10.1007/s10584-006-9104-8
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/42924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007351501
164 https://doi.org/10.1038/42924
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nature04504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021061618
167 https://doi.org/10.1038/nature04504
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nature06045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044599907
170 https://doi.org/10.1038/nature06045
171 rdf:type schema:CreativeWork
172 grid-institutes:grid.17100.37 schema:alternateName Met Office, Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK
173 schema:name Met Office, Hadley Centre, FitzRoy Road, EX1 3PB, Exeter, UK
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...