Moisture variability across China and Mongolia: 1951–2005 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-06-28

AUTHORS

Jinbao Li, Edward R. Cook, Rosanne D’arrigo, Fahu Chen, Xiaohua Gou

ABSTRACT

Moisture variability across China and Mongolia (hereafter, CM) during 1951–2005 was investigated using the recently developed monthly Palmer Drought Severity Index (PDSI) dataset. In total there are 206 PDSI grid points across CM, based on a 2.5° × 2.5° gridding system. For CM as a whole a significant decreasing trend in mean moisture availability was observed during 1951–2005, but with strong decadal (17.1-year) and interannual (5.0-year, 3.2-year, 2.4–2.8 year) variations. The areas affected by moderate and severe moisture deficit over CM have increased significantly since the mid-1950s. In contrast, there is a significant decreasing trend for areas affected by moderate wetness since the mid-1950s, and no significant trend was found for the areas affected by severe wetness. Ten moisture-related spatial patterns were objectively defined for CM using rotated Empirical Orthogonal Function (REOF) analysis. These patterns are related to distinct geographical areas and are associated with distinct temporal variations. Four of these patterns, in Northeast China (NE), North China (NC), Central China (CC), and East China (EC), generally demonstrate a significant decreasing trend in moisture availability. Two patterns located in western areas of Northwest China (NW) and the Tibetan Plateau (TP) show a significant moisture increase, while four patterns in Mongolia (MN), far western China (FW), South China (SC), and Southwest China (SW) do not have significant moisture trends during 1951–2005. Based on REOF results we propose that CM should be divided into ten coherent moisture divisions. Moisture variations within each division are generally coherent, but may show either similar or contrasting covariability with adjacent divisions. More... »

PAGES

1173-1186

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-008-0436-0

DOI

http://dx.doi.org/10.1007/s00382-008-0436-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029503248


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Arid Environment and Paleoclimate Research, MOE Key Laboratory of West China\u2019s Environmental System, Lanzhou University, Lanzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.32566.34", 
          "name": [
            "Tree-Ring Laboratory, Lamont-Doherty Earth Observatory, Columbia University, 10964, Palisades, NY, USA", 
            "Center for Arid Environment and Paleoclimate Research, MOE Key Laboratory of West China\u2019s Environmental System, Lanzhou University, Lanzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Jinbao", 
        "id": "sg:person.0601556665.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601556665.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tree-Ring Laboratory, Lamont-Doherty Earth Observatory, Columbia University, 10964, Palisades, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.473157.3", 
          "name": [
            "Tree-Ring Laboratory, Lamont-Doherty Earth Observatory, Columbia University, 10964, Palisades, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cook", 
        "givenName": "Edward R.", 
        "id": "sg:person.01104173064.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104173064.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tree-Ring Laboratory, Lamont-Doherty Earth Observatory, Columbia University, 10964, Palisades, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.473157.3", 
          "name": [
            "Tree-Ring Laboratory, Lamont-Doherty Earth Observatory, Columbia University, 10964, Palisades, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "D\u2019arrigo", 
        "givenName": "Rosanne", 
        "id": "sg:person.01250635254.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250635254.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Arid Environment and Paleoclimate Research, MOE Key Laboratory of West China\u2019s Environmental System, Lanzhou University, Lanzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.32566.34", 
          "name": [
            "Center for Arid Environment and Paleoclimate Research, MOE Key Laboratory of West China\u2019s Environmental System, Lanzhou University, Lanzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Fahu", 
        "id": "sg:person.010645714004.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010645714004.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Arid Environment and Paleoclimate Research, MOE Key Laboratory of West China\u2019s Environmental System, Lanzhou University, Lanzhou, China", 
          "id": "http://www.grid.ac/institutes/grid.32566.34", 
          "name": [
            "Center for Arid Environment and Paleoclimate Research, MOE Key Laboratory of West China\u2019s Environmental System, Lanzhou University, Lanzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gou", 
        "givenName": "Xiaohua", 
        "id": "sg:person.012575202425.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012575202425.55"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02289233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018991466", 
          "https://doi.org/10.1007/bf02289233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010673212131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003771136", 
          "https://doi.org/10.1023/a:1010673212131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00142586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038004731", 
          "https://doi.org/10.1007/bf00142586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00211676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050098477", 
          "https://doi.org/10.1007/bf00211676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-004-0053-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037599016", 
          "https://doi.org/10.1007/s00704-004-0053-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-003-0343-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007250147", 
          "https://doi.org/10.1007/s00382-003-0343-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008119805106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014345095", 
          "https://doi.org/10.1023/a:1008119805106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02837887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049885222", 
          "https://doi.org/10.1007/bf02837887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10584-006-9082-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009809531", 
          "https://doi.org/10.1007/s10584-006-9082-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-73333-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007363674", 
          "https://doi.org/10.1007/978-3-642-73333-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043746611", 
          "https://doi.org/10.1007/s003820050155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/376501a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002349860", 
          "https://doi.org/10.1038/376501a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-003-0319-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034985169", 
          "https://doi.org/10.1007/s00382-003-0319-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-06-28", 
    "datePublishedReg": "2008-06-28", 
    "description": "Moisture variability across China and Mongolia (hereafter, CM) during 1951\u20132005 was investigated using the recently developed monthly Palmer Drought Severity Index (PDSI) dataset. In total there are 206 PDSI grid points across CM, based on a 2.5\u00b0\u00a0\u00d7\u00a02.5\u00b0 gridding system. For CM as a whole a significant decreasing trend in mean moisture availability was observed during 1951\u20132005, but with strong decadal (17.1-year) and interannual (5.0-year, 3.2-year, 2.4\u20132.8\u00a0year) variations. The areas affected by moderate and severe moisture deficit over CM have increased significantly since the mid-1950s. In contrast, there is a significant decreasing trend for areas affected by moderate wetness since the mid-1950s, and no significant trend was found for the areas affected by severe wetness. Ten moisture-related spatial patterns were objectively defined for CM using rotated Empirical Orthogonal Function (REOF) analysis. These patterns are related to distinct geographical areas and are associated with distinct temporal variations. Four of these patterns, in Northeast China (NE), North China (NC), Central China (CC), and East China (EC), generally demonstrate a significant decreasing trend in moisture availability. Two patterns located in western areas of Northwest China (NW) and the Tibetan Plateau (TP) show a significant moisture increase, while four patterns in Mongolia (MN), far western China (FW), South China (SC), and Southwest China (SW) do not have significant moisture trends during 1951\u20132005. Based on REOF results we propose that CM should be divided into ten coherent moisture divisions. Moisture variations within each division are generally coherent, but may show either similar or contrasting covariability with adjacent divisions.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-008-0436-0", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3046672", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4972718", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7-8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "keywords": [
      "severe wetness", 
      "China", 
      "severe moisture deficit", 
      "adjacent divisions", 
      "western China", 
      "mid 1950s", 
      "central China", 
      "strong decadal", 
      "Southwest China", 
      "division", 
      "Mongolia", 
      "trends", 
      "geographical areas", 
      "distinct temporal variations", 
      "western area", 
      "distinct geographical areas", 
      "whole", 
      "spatial patterns", 
      "Northeast China", 
      "area", 
      "North China", 
      "South China", 
      "Northwest China", 
      "patterns", 
      "East China", 
      "availability", 
      "analysis", 
      "point", 
      "deficits", 
      "significant trend", 
      "system", 
      "contrast", 
      "variation", 
      "dataset", 
      "results", 
      "moisture trends", 
      "Tibetan Plateau", 
      "increase", 
      "function analysis", 
      "total", 
      "moisture variability", 
      "moisture availability", 
      "empirical orthogonal function (EOF) analysis", 
      "variability", 
      "interannual variations", 
      "temporal variation", 
      "moisture increase", 
      "moisture variations", 
      "moisture deficit", 
      "index dataset", 
      "grid points", 
      "wetness", 
      "plateau", 
      "decadal", 
      "covariability", 
      "CM"
    ], 
    "name": "Moisture variability across China and Mongolia: 1951\u20132005", 
    "pagination": "1173-1186", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029503248"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-008-0436-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-008-0436-0", 
      "https://app.dimensions.ai/details/publication/pub.1029503248"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_462.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-008-0436-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-008-0436-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-008-0436-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-008-0436-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-008-0436-0'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      21 PREDICATES      95 URIs      72 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-008-0436-0 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0405
4 anzsrc-for:0406
5 schema:author N88d10c349b0f45688a7379b3e2de63df
6 schema:citation sg:pub.10.1007/978-3-642-73333-8
7 sg:pub.10.1007/bf00142586
8 sg:pub.10.1007/bf00211676
9 sg:pub.10.1007/bf02289233
10 sg:pub.10.1007/bf02837887
11 sg:pub.10.1007/s00382-003-0319-3
12 sg:pub.10.1007/s00382-003-0343-3
13 sg:pub.10.1007/s003820050155
14 sg:pub.10.1007/s00704-004-0053-8
15 sg:pub.10.1007/s10584-006-9082-x
16 sg:pub.10.1023/a:1008119805106
17 sg:pub.10.1023/a:1010673212131
18 sg:pub.10.1038/376501a0
19 schema:datePublished 2008-06-28
20 schema:datePublishedReg 2008-06-28
21 schema:description Moisture variability across China and Mongolia (hereafter, CM) during 1951–2005 was investigated using the recently developed monthly Palmer Drought Severity Index (PDSI) dataset. In total there are 206 PDSI grid points across CM, based on a 2.5° × 2.5° gridding system. For CM as a whole a significant decreasing trend in mean moisture availability was observed during 1951–2005, but with strong decadal (17.1-year) and interannual (5.0-year, 3.2-year, 2.4–2.8 year) variations. The areas affected by moderate and severe moisture deficit over CM have increased significantly since the mid-1950s. In contrast, there is a significant decreasing trend for areas affected by moderate wetness since the mid-1950s, and no significant trend was found for the areas affected by severe wetness. Ten moisture-related spatial patterns were objectively defined for CM using rotated Empirical Orthogonal Function (REOF) analysis. These patterns are related to distinct geographical areas and are associated with distinct temporal variations. Four of these patterns, in Northeast China (NE), North China (NC), Central China (CC), and East China (EC), generally demonstrate a significant decreasing trend in moisture availability. Two patterns located in western areas of Northwest China (NW) and the Tibetan Plateau (TP) show a significant moisture increase, while four patterns in Mongolia (MN), far western China (FW), South China (SC), and Southwest China (SW) do not have significant moisture trends during 1951–2005. Based on REOF results we propose that CM should be divided into ten coherent moisture divisions. Moisture variations within each division are generally coherent, but may show either similar or contrasting covariability with adjacent divisions.
22 schema:genre article
23 schema:isAccessibleForFree false
24 schema:isPartOf N5943716b6cff468dbd90ff1cf4ced897
25 Nf4f2a496383e405287838658362f8b1e
26 sg:journal.1049631
27 schema:keywords CM
28 China
29 East China
30 Mongolia
31 North China
32 Northeast China
33 Northwest China
34 South China
35 Southwest China
36 Tibetan Plateau
37 adjacent divisions
38 analysis
39 area
40 availability
41 central China
42 contrast
43 covariability
44 dataset
45 decadal
46 deficits
47 distinct geographical areas
48 distinct temporal variations
49 division
50 empirical orthogonal function (EOF) analysis
51 function analysis
52 geographical areas
53 grid points
54 increase
55 index dataset
56 interannual variations
57 mid 1950s
58 moisture availability
59 moisture deficit
60 moisture increase
61 moisture trends
62 moisture variability
63 moisture variations
64 patterns
65 plateau
66 point
67 results
68 severe moisture deficit
69 severe wetness
70 significant trend
71 spatial patterns
72 strong decadal
73 system
74 temporal variation
75 total
76 trends
77 variability
78 variation
79 western China
80 western area
81 wetness
82 whole
83 schema:name Moisture variability across China and Mongolia: 1951–2005
84 schema:pagination 1173-1186
85 schema:productId N2851bd6a9efe49a989277239b6cb2db3
86 N833151cf766743689e72f2e6e71e052e
87 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029503248
88 https://doi.org/10.1007/s00382-008-0436-0
89 schema:sdDatePublished 2022-11-24T20:53
90 schema:sdLicense https://scigraph.springernature.com/explorer/license/
91 schema:sdPublisher N8aca2fe79cad42a3a982975bfee5e63d
92 schema:url https://doi.org/10.1007/s00382-008-0436-0
93 sgo:license sg:explorer/license/
94 sgo:sdDataset articles
95 rdf:type schema:ScholarlyArticle
96 N2851bd6a9efe49a989277239b6cb2db3 schema:name doi
97 schema:value 10.1007/s00382-008-0436-0
98 rdf:type schema:PropertyValue
99 N3a1284167edd4a308174f462cbe6c87c rdf:first sg:person.012575202425.55
100 rdf:rest rdf:nil
101 N47ae59bdc03a4617a01215fe1eb33963 rdf:first sg:person.01104173064.88
102 rdf:rest N82ac677870a14ce1b79246c8ed503f8d
103 N5943716b6cff468dbd90ff1cf4ced897 schema:issueNumber 7-8
104 rdf:type schema:PublicationIssue
105 N82ac677870a14ce1b79246c8ed503f8d rdf:first sg:person.01250635254.19
106 rdf:rest Neca95109d2074941b2e457e93f2d2dc4
107 N833151cf766743689e72f2e6e71e052e schema:name dimensions_id
108 schema:value pub.1029503248
109 rdf:type schema:PropertyValue
110 N88d10c349b0f45688a7379b3e2de63df rdf:first sg:person.0601556665.91
111 rdf:rest N47ae59bdc03a4617a01215fe1eb33963
112 N8aca2fe79cad42a3a982975bfee5e63d schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Neca95109d2074941b2e457e93f2d2dc4 rdf:first sg:person.010645714004.68
115 rdf:rest N3a1284167edd4a308174f462cbe6c87c
116 Nf4f2a496383e405287838658362f8b1e schema:volumeNumber 32
117 rdf:type schema:PublicationVolume
118 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
119 schema:name Earth Sciences
120 rdf:type schema:DefinedTerm
121 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
122 schema:name Atmospheric Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
125 schema:name Oceanography
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
128 schema:name Physical Geography and Environmental Geoscience
129 rdf:type schema:DefinedTerm
130 sg:grant.3046672 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-008-0436-0
131 rdf:type schema:MonetaryGrant
132 sg:grant.4972718 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-008-0436-0
133 rdf:type schema:MonetaryGrant
134 sg:journal.1049631 schema:issn 0930-7575
135 1432-0894
136 schema:name Climate Dynamics
137 schema:publisher Springer Nature
138 rdf:type schema:Periodical
139 sg:person.010645714004.68 schema:affiliation grid-institutes:grid.32566.34
140 schema:familyName Chen
141 schema:givenName Fahu
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010645714004.68
143 rdf:type schema:Person
144 sg:person.01104173064.88 schema:affiliation grid-institutes:grid.473157.3
145 schema:familyName Cook
146 schema:givenName Edward R.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104173064.88
148 rdf:type schema:Person
149 sg:person.01250635254.19 schema:affiliation grid-institutes:grid.473157.3
150 schema:familyName D’arrigo
151 schema:givenName Rosanne
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250635254.19
153 rdf:type schema:Person
154 sg:person.012575202425.55 schema:affiliation grid-institutes:grid.32566.34
155 schema:familyName Gou
156 schema:givenName Xiaohua
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012575202425.55
158 rdf:type schema:Person
159 sg:person.0601556665.91 schema:affiliation grid-institutes:grid.32566.34
160 schema:familyName Li
161 schema:givenName Jinbao
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601556665.91
163 rdf:type schema:Person
164 sg:pub.10.1007/978-3-642-73333-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007363674
165 https://doi.org/10.1007/978-3-642-73333-8
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/bf00142586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038004731
168 https://doi.org/10.1007/bf00142586
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/bf00211676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050098477
171 https://doi.org/10.1007/bf00211676
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/bf02289233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018991466
174 https://doi.org/10.1007/bf02289233
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/bf02837887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049885222
177 https://doi.org/10.1007/bf02837887
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s00382-003-0319-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034985169
180 https://doi.org/10.1007/s00382-003-0319-3
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/s00382-003-0343-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007250147
183 https://doi.org/10.1007/s00382-003-0343-3
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s003820050155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043746611
186 https://doi.org/10.1007/s003820050155
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/s00704-004-0053-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037599016
189 https://doi.org/10.1007/s00704-004-0053-8
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/s10584-006-9082-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009809531
192 https://doi.org/10.1007/s10584-006-9082-x
193 rdf:type schema:CreativeWork
194 sg:pub.10.1023/a:1008119805106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014345095
195 https://doi.org/10.1023/a:1008119805106
196 rdf:type schema:CreativeWork
197 sg:pub.10.1023/a:1010673212131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003771136
198 https://doi.org/10.1023/a:1010673212131
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/376501a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002349860
201 https://doi.org/10.1038/376501a0
202 rdf:type schema:CreativeWork
203 grid-institutes:grid.32566.34 schema:alternateName Center for Arid Environment and Paleoclimate Research, MOE Key Laboratory of West China’s Environmental System, Lanzhou University, Lanzhou, China
204 schema:name Center for Arid Environment and Paleoclimate Research, MOE Key Laboratory of West China’s Environmental System, Lanzhou University, Lanzhou, China
205 Tree-Ring Laboratory, Lamont-Doherty Earth Observatory, Columbia University, 10964, Palisades, NY, USA
206 rdf:type schema:Organization
207 grid-institutes:grid.473157.3 schema:alternateName Tree-Ring Laboratory, Lamont-Doherty Earth Observatory, Columbia University, 10964, Palisades, NY, USA
208 schema:name Tree-Ring Laboratory, Lamont-Doherty Earth Observatory, Columbia University, 10964, Palisades, NY, USA
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...