Predictable patterns of the Asian and Indo-Pacific summer precipitation in the NCEP CFS View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-06

AUTHORS

Jianyin Liang, Song Yang, Zeng-Zhen Hu, Bohua Huang, Arun Kumar, Zuqiang Zhang

ABSTRACT

The predictable patterns of the Asian and Indo-Pacific summer precipitation in the NCEP climate forecast system (CFS) are depicted by applying a maximized signal-to-noise empirical orthogonal function analysis. The CFS captures the two most dominant modes of observed climate patterns. The first most dominant mode is characterized by the climate features of the onset years of El Niño-Southern Oscillation (ENSO), with strong precipitation signals over the tropical eastern Indian and western Pacific oceans, Southeast Asia, and tropical Asian monsoon regions including the Bay of Bengal and the South China Sea. The second most dominant mode is characterized by the climate features of the decay years of ENSO, with weakening signals over the western-central Pacific and strengthening signals over the Indian Ocean. The CFS is capable of predicting the most dominant modes several months in advance. It is also highly skillful in capturing the air–sea interaction processes associated with the precipitation features, as demonstrated in sea surface temperature and wind patterns. More... »

PAGES

989-1001

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-008-0420-8

DOI

http://dx.doi.org/10.1007/s00382-008-0420-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029854186


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "China Meteorological Administration", 
          "id": "https://www.grid.ac/institutes/grid.8658.3", 
          "name": [
            "CMA Institute of Tropical and Marine Meteorology, Guangzhou, Guangdong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Jianyin", 
        "id": "sg:person.011176315461.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011176315461.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "NOAA/NWS/NCEP Climate Prediction Center, 5200 Auth Road, Room 605, 20746, Camp Springs, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Song", 
        "id": "sg:person.010450770353.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010450770353.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Center for Ocean-Land-Atmosphere Studies, Calverton, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Zeng-Zhen", 
        "id": "sg:person.0640321556.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640321556.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "George Mason University", 
          "id": "https://www.grid.ac/institutes/grid.22448.38", 
          "name": [
            "Department of Climate Dynamics, George Mason University, Fairfax, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Bohua", 
        "id": "sg:person.01315612456.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315612456.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "NOAA/NWS/NCEP Climate Prediction Center, 5200 Auth Road, Room 605, 20746, Camp Springs, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumar", 
        "givenName": "Arun", 
        "id": "sg:person.0706434756.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706434756.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Meteorological Administration", 
          "id": "https://www.grid.ac/institutes/grid.8658.3", 
          "name": [
            "CMA National Climate Center, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zuqiang", 
        "id": "sg:person.07471147045.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07471147045.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/2000jd900610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000031619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1999)012<2562:tarotn>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001226341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3812.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005354947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(97)00559-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011007502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-004-0443-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011932009", 
          "https://doi.org/10.1007/s00382-004-0443-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-004-0443-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011932009", 
          "https://doi.org/10.1007/s00382-004-0443-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-007-0310-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016643736", 
          "https://doi.org/10.1007/s00382-007-0310-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-007-0310-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016643736", 
          "https://doi.org/10.1007/s00382-007-0310-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.49707934202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017917405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2000)013<3261:teocvi>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018008888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-83-11-1631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019725822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2000)013<1517:peathd>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020250586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1996)009<0840:aogmpu>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020348944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00376-997-0016-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020726535", 
          "https://doi.org/10.1007/s00376-997-0016-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00376-997-0016-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020726535", 
          "https://doi.org/10.1007/s00376-997-0016-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-37722-0_6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023213365", 
          "https://doi.org/10.1007/3-540-37722-0_6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(2003)131<3038:refsta>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024072770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005jd006001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025076335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005jd006001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025076335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2002)015<1609:aiisas>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025644996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.49711850705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028107403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/mwr3393.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033448828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1996)009<2568:lritss>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033941863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1985)113<1590:smer>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034346769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2001)014<2880:pmorsv>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034665287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jcli1961.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038682295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2003)16<1195:aoiaii>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042435212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1999)012<0917:rsstvd>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043511124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2002)015<3252:peatpi>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044251296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00376-007-0001-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047094844", 
          "https://doi.org/10.1007/s00376-007-0001-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00376-007-0001-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047094844", 
          "https://doi.org/10.1007/s00376-007-0001-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0477(1984)065<0114:tmoeaa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048213017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1997)125<0773:iapoac>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051016622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1999)127<1187:odaiap>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051238226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-83-11-1631(2002)083<1631:nar>2.3.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063454305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812701411_0007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088788250"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-06", 
    "datePublishedReg": "2009-06-01", 
    "description": "The predictable patterns of the Asian and Indo-Pacific summer precipitation in the NCEP climate forecast system (CFS) are depicted by applying a maximized signal-to-noise empirical orthogonal function analysis. The CFS captures the two most dominant modes of observed climate patterns. The first most dominant mode is characterized by the climate features of the onset years of El Ni\u00f1o-Southern Oscillation (ENSO), with strong precipitation signals over the tropical eastern Indian and western Pacific oceans, Southeast Asia, and tropical Asian monsoon regions including the Bay of Bengal and the South China Sea. The second most dominant mode is characterized by the climate features of the decay years of ENSO, with weakening signals over the western-central Pacific and strengthening signals over the Indian Ocean. The CFS is capable of predicting the most dominant modes several months in advance. It is also highly skillful in capturing the air\u2013sea interaction processes associated with the precipitation features, as demonstrated in sea surface temperature and wind patterns.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00382-008-0420-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4041660", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7-8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "Predictable patterns of the Asian and Indo-Pacific summer precipitation in the NCEP CFS", 
    "pagination": "989-1001", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8e38f94951865126f803024458f9375c82dc741f82adffa2a6bf25a5bd05422f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-008-0420-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029854186"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-008-0420-8", 
      "https://app.dimensions.ai/details/publication/pub.1029854186"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13071_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00382-008-0420-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-008-0420-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-008-0420-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-008-0420-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-008-0420-8'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-008-0420-8 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N95e245144ae84f9bab9a8c015b3d69f1
4 schema:citation sg:pub.10.1007/3-540-37722-0_6
5 sg:pub.10.1007/s00376-007-0001-5
6 sg:pub.10.1007/s00376-997-0016-y
7 sg:pub.10.1007/s00382-004-0443-8
8 sg:pub.10.1007/s00382-007-0310-5
9 https://doi.org/10.1002/qj.49707934202
10 https://doi.org/10.1002/qj.49711850705
11 https://doi.org/10.1016/s0375-9601(97)00559-8
12 https://doi.org/10.1029/2000jd900610
13 https://doi.org/10.1029/2005jd006001
14 https://doi.org/10.1142/9789812701411_0007
15 https://doi.org/10.1175/1520-0442(1996)009<0840:aogmpu>2.0.co;2
16 https://doi.org/10.1175/1520-0442(1996)009<2568:lritss>2.0.co;2
17 https://doi.org/10.1175/1520-0442(1999)012<0917:rsstvd>2.0.co;2
18 https://doi.org/10.1175/1520-0442(1999)012<2562:tarotn>2.0.co;2
19 https://doi.org/10.1175/1520-0442(2000)013<1517:peathd>2.0.co;2
20 https://doi.org/10.1175/1520-0442(2000)013<3261:teocvi>2.0.co;2
21 https://doi.org/10.1175/1520-0442(2001)014<2880:pmorsv>2.0.co;2
22 https://doi.org/10.1175/1520-0442(2002)015<1609:aiisas>2.0.co;2
23 https://doi.org/10.1175/1520-0442(2002)015<3252:peatpi>2.0.co;2
24 https://doi.org/10.1175/1520-0442(2003)16<1195:aoiaii>2.0.co;2
25 https://doi.org/10.1175/1520-0477(1984)065<0114:tmoeaa>2.0.co;2
26 https://doi.org/10.1175/1520-0493(1985)113<1590:smer>2.0.co;2
27 https://doi.org/10.1175/1520-0493(1997)125<0773:iapoac>2.0.co;2
28 https://doi.org/10.1175/1520-0493(1999)127<1187:odaiap>2.0.co;2
29 https://doi.org/10.1175/1520-0493(2003)131<3038:refsta>2.0.co;2
30 https://doi.org/10.1175/2008jcli1961.1
31 https://doi.org/10.1175/bams-83-11-1631
32 https://doi.org/10.1175/bams-83-11-1631(2002)083<1631:nar>2.3.co;2
33 https://doi.org/10.1175/jcli3812.1
34 https://doi.org/10.1175/mwr3393.1
35 schema:datePublished 2009-06
36 schema:datePublishedReg 2009-06-01
37 schema:description The predictable patterns of the Asian and Indo-Pacific summer precipitation in the NCEP climate forecast system (CFS) are depicted by applying a maximized signal-to-noise empirical orthogonal function analysis. The CFS captures the two most dominant modes of observed climate patterns. The first most dominant mode is characterized by the climate features of the onset years of El Niño-Southern Oscillation (ENSO), with strong precipitation signals over the tropical eastern Indian and western Pacific oceans, Southeast Asia, and tropical Asian monsoon regions including the Bay of Bengal and the South China Sea. The second most dominant mode is characterized by the climate features of the decay years of ENSO, with weakening signals over the western-central Pacific and strengthening signals over the Indian Ocean. The CFS is capable of predicting the most dominant modes several months in advance. It is also highly skillful in capturing the air–sea interaction processes associated with the precipitation features, as demonstrated in sea surface temperature and wind patterns.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N5eb60655c747491f952aa1ba2a33e230
42 Nb6a4577e40c04bf3b64f913007eaf00e
43 sg:journal.1049631
44 schema:name Predictable patterns of the Asian and Indo-Pacific summer precipitation in the NCEP CFS
45 schema:pagination 989-1001
46 schema:productId N34b766561ee94a479c095e306101c9da
47 N7dd6587415504eb891f250ce954d0ed9
48 Nac6960e246d9419aabbc4396284a6d56
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029854186
50 https://doi.org/10.1007/s00382-008-0420-8
51 schema:sdDatePublished 2019-04-11T14:26
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N331e2f9ce8024637b1ce4fffd11fca17
54 schema:url http://link.springer.com/10.1007%2Fs00382-008-0420-8
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N018218ced72a4cec90a2506c03e66dbf schema:name Center for Ocean-Land-Atmosphere Studies, Calverton, MD, USA
59 rdf:type schema:Organization
60 N22b3923e33b24ec0bf07ce170a3e1b51 rdf:first sg:person.0706434756.44
61 rdf:rest Nd2e60e0e7f1b41789abfbac1be82b779
62 N2c585bc344744b449b8e84cb429961a8 rdf:first sg:person.01315612456.41
63 rdf:rest N22b3923e33b24ec0bf07ce170a3e1b51
64 N331e2f9ce8024637b1ce4fffd11fca17 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N34b766561ee94a479c095e306101c9da schema:name dimensions_id
67 schema:value pub.1029854186
68 rdf:type schema:PropertyValue
69 N518ef235e16647e980c84071ea0af4c1 rdf:first sg:person.010450770353.25
70 rdf:rest N6ddac78b79d5489f8d7bc200cbff49ca
71 N5eb60655c747491f952aa1ba2a33e230 schema:issueNumber 7-8
72 rdf:type schema:PublicationIssue
73 N6ddac78b79d5489f8d7bc200cbff49ca rdf:first sg:person.0640321556.06
74 rdf:rest N2c585bc344744b449b8e84cb429961a8
75 N6ea98251229f4ccd8551e70c32b3b156 schema:name NOAA/NWS/NCEP Climate Prediction Center, 5200 Auth Road, Room 605, 20746, Camp Springs, MD, USA
76 rdf:type schema:Organization
77 N7dd6587415504eb891f250ce954d0ed9 schema:name doi
78 schema:value 10.1007/s00382-008-0420-8
79 rdf:type schema:PropertyValue
80 N95e245144ae84f9bab9a8c015b3d69f1 rdf:first sg:person.011176315461.89
81 rdf:rest N518ef235e16647e980c84071ea0af4c1
82 Nac6960e246d9419aabbc4396284a6d56 schema:name readcube_id
83 schema:value 8e38f94951865126f803024458f9375c82dc741f82adffa2a6bf25a5bd05422f
84 rdf:type schema:PropertyValue
85 Nb6a4577e40c04bf3b64f913007eaf00e schema:volumeNumber 32
86 rdf:type schema:PublicationVolume
87 Nd2e60e0e7f1b41789abfbac1be82b779 rdf:first sg:person.07471147045.05
88 rdf:rest rdf:nil
89 Nea0c95746d0f4024bf15c4759d6cf64d schema:name NOAA/NWS/NCEP Climate Prediction Center, 5200 Auth Road, Room 605, 20746, Camp Springs, MD, USA
90 rdf:type schema:Organization
91 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
92 schema:name Earth Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
95 schema:name Atmospheric Sciences
96 rdf:type schema:DefinedTerm
97 sg:grant.4041660 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-008-0420-8
98 rdf:type schema:MonetaryGrant
99 sg:journal.1049631 schema:issn 0930-7575
100 1432-0894
101 schema:name Climate Dynamics
102 rdf:type schema:Periodical
103 sg:person.010450770353.25 schema:affiliation Nea0c95746d0f4024bf15c4759d6cf64d
104 schema:familyName Yang
105 schema:givenName Song
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010450770353.25
107 rdf:type schema:Person
108 sg:person.011176315461.89 schema:affiliation https://www.grid.ac/institutes/grid.8658.3
109 schema:familyName Liang
110 schema:givenName Jianyin
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011176315461.89
112 rdf:type schema:Person
113 sg:person.01315612456.41 schema:affiliation https://www.grid.ac/institutes/grid.22448.38
114 schema:familyName Huang
115 schema:givenName Bohua
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315612456.41
117 rdf:type schema:Person
118 sg:person.0640321556.06 schema:affiliation N018218ced72a4cec90a2506c03e66dbf
119 schema:familyName Hu
120 schema:givenName Zeng-Zhen
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640321556.06
122 rdf:type schema:Person
123 sg:person.0706434756.44 schema:affiliation N6ea98251229f4ccd8551e70c32b3b156
124 schema:familyName Kumar
125 schema:givenName Arun
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706434756.44
127 rdf:type schema:Person
128 sg:person.07471147045.05 schema:affiliation https://www.grid.ac/institutes/grid.8658.3
129 schema:familyName Zhang
130 schema:givenName Zuqiang
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07471147045.05
132 rdf:type schema:Person
133 sg:pub.10.1007/3-540-37722-0_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023213365
134 https://doi.org/10.1007/3-540-37722-0_6
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/s00376-007-0001-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047094844
137 https://doi.org/10.1007/s00376-007-0001-5
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s00376-997-0016-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020726535
140 https://doi.org/10.1007/s00376-997-0016-y
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s00382-004-0443-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011932009
143 https://doi.org/10.1007/s00382-004-0443-8
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s00382-007-0310-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016643736
146 https://doi.org/10.1007/s00382-007-0310-5
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1002/qj.49707934202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017917405
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1002/qj.49711850705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028107403
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s0375-9601(97)00559-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011007502
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1029/2000jd900610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000031619
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1029/2005jd006001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025076335
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1142/9789812701411_0007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088788250
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1175/1520-0442(1996)009<0840:aogmpu>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020348944
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1175/1520-0442(1996)009<2568:lritss>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033941863
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1175/1520-0442(1999)012<0917:rsstvd>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043511124
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1175/1520-0442(1999)012<2562:tarotn>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001226341
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1175/1520-0442(2000)013<1517:peathd>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020250586
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1175/1520-0442(2000)013<3261:teocvi>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018008888
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1175/1520-0442(2001)014<2880:pmorsv>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034665287
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1175/1520-0442(2002)015<1609:aiisas>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025644996
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1175/1520-0442(2002)015<3252:peatpi>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044251296
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1175/1520-0442(2003)16<1195:aoiaii>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042435212
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1175/1520-0477(1984)065<0114:tmoeaa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048213017
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1175/1520-0493(1985)113<1590:smer>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034346769
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1175/1520-0493(1997)125<0773:iapoac>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051016622
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1175/1520-0493(1999)127<1187:odaiap>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051238226
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1175/1520-0493(2003)131<3038:refsta>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024072770
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1175/2008jcli1961.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038682295
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1175/bams-83-11-1631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019725822
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1175/bams-83-11-1631(2002)083<1631:nar>2.3.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063454305
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1175/jcli3812.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005354947
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1175/mwr3393.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033448828
199 rdf:type schema:CreativeWork
200 https://www.grid.ac/institutes/grid.22448.38 schema:alternateName George Mason University
201 schema:name Department of Climate Dynamics, George Mason University, Fairfax, VA, USA
202 rdf:type schema:Organization
203 https://www.grid.ac/institutes/grid.8658.3 schema:alternateName China Meteorological Administration
204 schema:name CMA Institute of Tropical and Marine Meteorology, Guangzhou, Guangdong, China
205 CMA National Climate Center, Beijing, China
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...