Ontology type: schema:ScholarlyArticle
2007-09-11
AUTHORSManoj M. Joshi, Jonathan M. Gregory, Mark J. Webb, David M. H. Sexton, Tim C. Johns
ABSTRACTThe land/sea warming contrast is a phenomenon of both equilibrium and transient simulations of climate change: large areas of the land surface at most latitudes undergo temperature changes whose amplitude is more than those of the surrounding oceans. Using idealised GCM experiments with perturbed SSTs, we show that the land/sea contrast in equilibrium simulations is associated with local feedbacks and the hydrological cycle over land, rather than with externally imposed radiative forcing. This mechanism also explains a large component of the land/sea contrast in transient simulations as well. We propose a conceptual model with three elements: (1) there is a spatially variable level in the lower troposphere at which temperature change is the same over land and sea; (2) the dependence of lapse rate on moisture and temperature causes different changes in lapse rate upon warming over land and sea, and hence a surface land/sea temperature contrast; (3) moisture convergence over land predominantly takes place at levels significantly colder than the surface; wherever moisture supply over land is limited, the increase of evaporation over land upon warming is limited, reducing the relative humidity in the boundary layer over land, and hence also enhancing the land/sea contrast. The non-linearity of the Clausius–Clapeyron relationship of saturation specific humidity to temperature is critical in (2) and (3). We examine the sensitivity of the land/sea contrast to model representations of different physical processes using a large ensemble of climate model integrations with perturbed parameters, and find that it is most sensitive to representation of large-scale cloud and stomatal closure. We discuss our results in the context of high-resolution and Earth-system modelling of climate change. More... »
PAGES455-465
http://scigraph.springernature.com/pub.10.1007/s00382-007-0306-1
DOIhttp://dx.doi.org/10.1007/s00382-007-0306-1
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1002755636
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atmospheric Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Geography and Environmental Geoscience",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Walker Institute for Climate System Research, Department of Meteorology, University of Reading, Earley Gate, PO Box 243, RG6 6BB, Reading, UK",
"id": "http://www.grid.ac/institutes/grid.9435.b",
"name": [
"Met Office Hadley Centre, Exeter, UK",
"Walker Institute for Climate System Research, Department of Meteorology, University of Reading, Earley Gate, PO Box 243, RG6 6BB, Reading, UK"
],
"type": "Organization"
},
"familyName": "Joshi",
"givenName": "Manoj M.",
"id": "sg:person.01325171140.60",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325171140.60"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Walker Institute for Climate System Research, Department of Meteorology, University of Reading, Earley Gate, PO Box 243, RG6 6BB, Reading, UK",
"id": "http://www.grid.ac/institutes/grid.9435.b",
"name": [
"Met Office Hadley Centre, Exeter, UK",
"Walker Institute for Climate System Research, Department of Meteorology, University of Reading, Earley Gate, PO Box 243, RG6 6BB, Reading, UK"
],
"type": "Organization"
},
"familyName": "Gregory",
"givenName": "Jonathan M.",
"id": "sg:person.0776106250.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776106250.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Met Office Hadley Centre, Exeter, UK",
"id": "http://www.grid.ac/institutes/grid.17100.37",
"name": [
"Met Office Hadley Centre, Exeter, UK"
],
"type": "Organization"
},
"familyName": "Webb",
"givenName": "Mark J.",
"id": "sg:person.010673066557.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010673066557.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Met Office Hadley Centre, Exeter, UK",
"id": "http://www.grid.ac/institutes/grid.17100.37",
"name": [
"Met Office Hadley Centre, Exeter, UK"
],
"type": "Organization"
},
"familyName": "Sexton",
"givenName": "David M. H.",
"id": "sg:person.014153746435.96",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014153746435.96"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Met Office Hadley Centre, Exeter, UK",
"id": "http://www.grid.ac/institutes/grid.17100.37",
"name": [
"Met Office Hadley Centre, Exeter, UK"
],
"type": "Organization"
},
"familyName": "Johns",
"givenName": "Tim C.",
"id": "sg:person.015050322223.13",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015050322223.13"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s003820000067",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022442065",
"https://doi.org/10.1007/s003820000067"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-006-0111-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021690503",
"https://doi.org/10.1007/s00382-006-0111-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-002-0283-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085172498",
"https://doi.org/10.1007/s00382-002-0283-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature02771",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036499414",
"https://doi.org/10.1038/nature02771"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00382-006-0125-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027942190",
"https://doi.org/10.1007/s00382-006-0125-9"
],
"type": "CreativeWork"
}
],
"datePublished": "2007-09-11",
"datePublishedReg": "2007-09-11",
"description": "The land/sea warming contrast is a phenomenon of both equilibrium and transient simulations of climate change: large areas of the land surface at most latitudes undergo temperature changes whose amplitude is more than those of the surrounding oceans. Using idealised GCM experiments with perturbed SSTs, we show that the land/sea contrast in equilibrium simulations is associated with local feedbacks and the hydrological cycle over land, rather than with externally imposed radiative forcing. This mechanism also explains a large component of the land/sea contrast in transient simulations as well. We propose a conceptual model with three elements: (1) there is a spatially variable level in the lower troposphere at which temperature change is the same over land and sea; (2) the dependence of lapse rate on moisture and temperature causes different changes in lapse rate upon warming over land and sea, and hence a surface land/sea temperature contrast; (3) moisture convergence over land predominantly takes place at levels significantly colder than the surface; wherever moisture supply over land is limited, the increase of evaporation over land upon warming is limited, reducing the relative humidity in the boundary layer over land, and hence also enhancing the land/sea contrast. The non-linearity of the Clausius\u2013Clapeyron relationship of saturation specific humidity to temperature is critical in (2) and (3). We examine the sensitivity of the land/sea contrast to model representations of different physical processes using a large ensemble of climate model integrations with perturbed parameters, and find that it is most sensitive to representation of large-scale cloud and stomatal closure. We discuss our results in the context of high-resolution and Earth-system modelling of climate change.",
"genre": "article",
"id": "sg:pub.10.1007/s00382-007-0306-1",
"inLanguage": "en",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.2776361",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1049631",
"issn": [
"0930-7575",
"1432-0894"
],
"name": "Climate Dynamics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "5",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "30"
}
],
"keywords": [
"land/sea contrast",
"climate change",
"warming contrast",
"lapse rate",
"climate model integrations",
"saturation specific humidity",
"increase of evaporation",
"Earth system modelling",
"Clausius\u2013Clapeyron relationship",
"temperature changes",
"large-scale cloud",
"different physical processes",
"GCM experiments",
"moisture convergence",
"hydrological cycle",
"radiative forcing",
"specific humidity",
"lower troposphere",
"land surface",
"most latitudes",
"moisture supply",
"temperature contrast",
"large ensemble",
"model integration",
"transient simulation",
"physical processes",
"boundary layer",
"equilibrium simulations",
"local feedback",
"large areas",
"Sea",
"land",
"perturbed parameters",
"conceptual model",
"relative humidity",
"largest component",
"humidity",
"Ocean",
"SST",
"troposphere",
"forcing",
"warming",
"latitudes",
"moisture",
"evaporation",
"cloud",
"changes",
"different changes",
"temperature",
"surface",
"ensemble",
"simulations",
"modelling",
"contrast",
"area",
"supply",
"cycle",
"layer",
"variable levels",
"amplitude",
"elements",
"closure",
"feedback",
"convergence",
"equilibrium",
"place",
"model",
"rate",
"process",
"components",
"stomatal closure",
"relationship",
"increase",
"representation",
"phenomenon",
"levels",
"parameters",
"mechanism",
"experiments",
"results",
"sensitivity",
"integration",
"dependence",
"context"
],
"name": "Mechanisms for the land/sea warming contrast exhibited by simulations of climate change",
"pagination": "455-465",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1002755636"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00382-007-0306-1"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00382-007-0306-1",
"https://app.dimensions.ai/details/publication/pub.1002755636"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:07",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_434.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00382-007-0306-1"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-007-0306-1'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-007-0306-1'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-007-0306-1'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-007-0306-1'
This table displays all metadata directly associated to this object as RDF triples.
200 TRIPLES
22 PREDICATES
115 URIs
101 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00382-007-0306-1 | schema:about | anzsrc-for:04 |
2 | ″ | ″ | anzsrc-for:0401 |
3 | ″ | ″ | anzsrc-for:0406 |
4 | ″ | schema:author | Ne2c308620ba640129186010b613e226f |
5 | ″ | schema:citation | sg:pub.10.1007/s00382-002-0283-3 |
6 | ″ | ″ | sg:pub.10.1007/s00382-006-0111-2 |
7 | ″ | ″ | sg:pub.10.1007/s00382-006-0125-9 |
8 | ″ | ″ | sg:pub.10.1007/s003820000067 |
9 | ″ | ″ | sg:pub.10.1038/nature02771 |
10 | ″ | schema:datePublished | 2007-09-11 |
11 | ″ | schema:datePublishedReg | 2007-09-11 |
12 | ″ | schema:description | The land/sea warming contrast is a phenomenon of both equilibrium and transient simulations of climate change: large areas of the land surface at most latitudes undergo temperature changes whose amplitude is more than those of the surrounding oceans. Using idealised GCM experiments with perturbed SSTs, we show that the land/sea contrast in equilibrium simulations is associated with local feedbacks and the hydrological cycle over land, rather than with externally imposed radiative forcing. This mechanism also explains a large component of the land/sea contrast in transient simulations as well. We propose a conceptual model with three elements: (1) there is a spatially variable level in the lower troposphere at which temperature change is the same over land and sea; (2) the dependence of lapse rate on moisture and temperature causes different changes in lapse rate upon warming over land and sea, and hence a surface land/sea temperature contrast; (3) moisture convergence over land predominantly takes place at levels significantly colder than the surface; wherever moisture supply over land is limited, the increase of evaporation over land upon warming is limited, reducing the relative humidity in the boundary layer over land, and hence also enhancing the land/sea contrast. The non-linearity of the Clausius–Clapeyron relationship of saturation specific humidity to temperature is critical in (2) and (3). We examine the sensitivity of the land/sea contrast to model representations of different physical processes using a large ensemble of climate model integrations with perturbed parameters, and find that it is most sensitive to representation of large-scale cloud and stomatal closure. We discuss our results in the context of high-resolution and Earth-system modelling of climate change. |
13 | ″ | schema:genre | article |
14 | ″ | schema:inLanguage | en |
15 | ″ | schema:isAccessibleForFree | false |
16 | ″ | schema:isPartOf | N58237adf425c426da18c6c71b097c452 |
17 | ″ | ″ | Na3e156b104244495bcee758dbcbaa95b |
18 | ″ | ″ | sg:journal.1049631 |
19 | ″ | schema:keywords | Clausius–Clapeyron relationship |
20 | ″ | ″ | Earth system modelling |
21 | ″ | ″ | GCM experiments |
22 | ″ | ″ | Ocean |
23 | ″ | ″ | SST |
24 | ″ | ″ | Sea |
25 | ″ | ″ | amplitude |
26 | ″ | ″ | area |
27 | ″ | ″ | boundary layer |
28 | ″ | ″ | changes |
29 | ″ | ″ | climate change |
30 | ″ | ″ | climate model integrations |
31 | ″ | ″ | closure |
32 | ″ | ″ | cloud |
33 | ″ | ″ | components |
34 | ″ | ″ | conceptual model |
35 | ″ | ″ | context |
36 | ″ | ″ | contrast |
37 | ″ | ″ | convergence |
38 | ″ | ″ | cycle |
39 | ″ | ″ | dependence |
40 | ″ | ″ | different changes |
41 | ″ | ″ | different physical processes |
42 | ″ | ″ | elements |
43 | ″ | ″ | ensemble |
44 | ″ | ″ | equilibrium |
45 | ″ | ″ | equilibrium simulations |
46 | ″ | ″ | evaporation |
47 | ″ | ″ | experiments |
48 | ″ | ″ | feedback |
49 | ″ | ″ | forcing |
50 | ″ | ″ | humidity |
51 | ″ | ″ | hydrological cycle |
52 | ″ | ″ | increase |
53 | ″ | ″ | increase of evaporation |
54 | ″ | ″ | integration |
55 | ″ | ″ | land |
56 | ″ | ″ | land surface |
57 | ″ | ″ | land/sea contrast |
58 | ″ | ″ | lapse rate |
59 | ″ | ″ | large areas |
60 | ″ | ″ | large ensemble |
61 | ″ | ″ | large-scale cloud |
62 | ″ | ″ | largest component |
63 | ″ | ″ | latitudes |
64 | ″ | ″ | layer |
65 | ″ | ″ | levels |
66 | ″ | ″ | local feedback |
67 | ″ | ″ | lower troposphere |
68 | ″ | ″ | mechanism |
69 | ″ | ″ | model |
70 | ″ | ″ | model integration |
71 | ″ | ″ | modelling |
72 | ″ | ″ | moisture |
73 | ″ | ″ | moisture convergence |
74 | ″ | ″ | moisture supply |
75 | ″ | ″ | most latitudes |
76 | ″ | ″ | parameters |
77 | ″ | ″ | perturbed parameters |
78 | ″ | ″ | phenomenon |
79 | ″ | ″ | physical processes |
80 | ″ | ″ | place |
81 | ″ | ″ | process |
82 | ″ | ″ | radiative forcing |
83 | ″ | ″ | rate |
84 | ″ | ″ | relationship |
85 | ″ | ″ | relative humidity |
86 | ″ | ″ | representation |
87 | ″ | ″ | results |
88 | ″ | ″ | saturation specific humidity |
89 | ″ | ″ | sensitivity |
90 | ″ | ″ | simulations |
91 | ″ | ″ | specific humidity |
92 | ″ | ″ | stomatal closure |
93 | ″ | ″ | supply |
94 | ″ | ″ | surface |
95 | ″ | ″ | temperature |
96 | ″ | ″ | temperature changes |
97 | ″ | ″ | temperature contrast |
98 | ″ | ″ | transient simulation |
99 | ″ | ″ | troposphere |
100 | ″ | ″ | variable levels |
101 | ″ | ″ | warming |
102 | ″ | ″ | warming contrast |
103 | ″ | schema:name | Mechanisms for the land/sea warming contrast exhibited by simulations of climate change |
104 | ″ | schema:pagination | 455-465 |
105 | ″ | schema:productId | N151717bcd2c245278cc65fa889483ebb |
106 | ″ | ″ | Nb030b0f9aae94c88a8c1594bdbcc0c9c |
107 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1002755636 |
108 | ″ | ″ | https://doi.org/10.1007/s00382-007-0306-1 |
109 | ″ | schema:sdDatePublished | 2022-06-01T22:07 |
110 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
111 | ″ | schema:sdPublisher | N9fdee1a317074c4896fcc3324f356d1e |
112 | ″ | schema:url | https://doi.org/10.1007/s00382-007-0306-1 |
113 | ″ | sgo:license | sg:explorer/license/ |
114 | ″ | sgo:sdDataset | articles |
115 | ″ | rdf:type | schema:ScholarlyArticle |
116 | N151717bcd2c245278cc65fa889483ebb | schema:name | doi |
117 | ″ | schema:value | 10.1007/s00382-007-0306-1 |
118 | ″ | rdf:type | schema:PropertyValue |
119 | N1b932e8910bd4035ab5fa9802c3eb6f7 | rdf:first | sg:person.010673066557.41 |
120 | ″ | rdf:rest | Nf154530718fe4fd1a7315a91adbca7bc |
121 | N58237adf425c426da18c6c71b097c452 | schema:volumeNumber | 30 |
122 | ″ | rdf:type | schema:PublicationVolume |
123 | N7157fcd9633b4dd182b53efaa3afb4d5 | rdf:first | sg:person.015050322223.13 |
124 | ″ | rdf:rest | rdf:nil |
125 | N9fdee1a317074c4896fcc3324f356d1e | schema:name | Springer Nature - SN SciGraph project |
126 | ″ | rdf:type | schema:Organization |
127 | Na3e156b104244495bcee758dbcbaa95b | schema:issueNumber | 5 |
128 | ″ | rdf:type | schema:PublicationIssue |
129 | Nb030b0f9aae94c88a8c1594bdbcc0c9c | schema:name | dimensions_id |
130 | ″ | schema:value | pub.1002755636 |
131 | ″ | rdf:type | schema:PropertyValue |
132 | Ne2c308620ba640129186010b613e226f | rdf:first | sg:person.01325171140.60 |
133 | ″ | rdf:rest | Ne5f3657ba00b4e71967f819c60bc5eaa |
134 | Ne5f3657ba00b4e71967f819c60bc5eaa | rdf:first | sg:person.0776106250.41 |
135 | ″ | rdf:rest | N1b932e8910bd4035ab5fa9802c3eb6f7 |
136 | Nf154530718fe4fd1a7315a91adbca7bc | rdf:first | sg:person.014153746435.96 |
137 | ″ | rdf:rest | N7157fcd9633b4dd182b53efaa3afb4d5 |
138 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
139 | ″ | schema:name | Earth Sciences |
140 | ″ | rdf:type | schema:DefinedTerm |
141 | anzsrc-for:0401 | schema:inDefinedTermSet | anzsrc-for: |
142 | ″ | schema:name | Atmospheric Sciences |
143 | ″ | rdf:type | schema:DefinedTerm |
144 | anzsrc-for:0406 | schema:inDefinedTermSet | anzsrc-for: |
145 | ″ | schema:name | Physical Geography and Environmental Geoscience |
146 | ″ | rdf:type | schema:DefinedTerm |
147 | sg:grant.2776361 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s00382-007-0306-1 |
148 | ″ | rdf:type | schema:MonetaryGrant |
149 | sg:journal.1049631 | schema:issn | 0930-7575 |
150 | ″ | ″ | 1432-0894 |
151 | ″ | schema:name | Climate Dynamics |
152 | ″ | schema:publisher | Springer Nature |
153 | ″ | rdf:type | schema:Periodical |
154 | sg:person.010673066557.41 | schema:affiliation | grid-institutes:grid.17100.37 |
155 | ″ | schema:familyName | Webb |
156 | ″ | schema:givenName | Mark J. |
157 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010673066557.41 |
158 | ″ | rdf:type | schema:Person |
159 | sg:person.01325171140.60 | schema:affiliation | grid-institutes:grid.9435.b |
160 | ″ | schema:familyName | Joshi |
161 | ″ | schema:givenName | Manoj M. |
162 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325171140.60 |
163 | ″ | rdf:type | schema:Person |
164 | sg:person.014153746435.96 | schema:affiliation | grid-institutes:grid.17100.37 |
165 | ″ | schema:familyName | Sexton |
166 | ″ | schema:givenName | David M. H. |
167 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014153746435.96 |
168 | ″ | rdf:type | schema:Person |
169 | sg:person.015050322223.13 | schema:affiliation | grid-institutes:grid.17100.37 |
170 | ″ | schema:familyName | Johns |
171 | ″ | schema:givenName | Tim C. |
172 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015050322223.13 |
173 | ″ | rdf:type | schema:Person |
174 | sg:person.0776106250.41 | schema:affiliation | grid-institutes:grid.9435.b |
175 | ″ | schema:familyName | Gregory |
176 | ″ | schema:givenName | Jonathan M. |
177 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776106250.41 |
178 | ″ | rdf:type | schema:Person |
179 | sg:pub.10.1007/s00382-002-0283-3 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1085172498 |
180 | ″ | ″ | https://doi.org/10.1007/s00382-002-0283-3 |
181 | ″ | rdf:type | schema:CreativeWork |
182 | sg:pub.10.1007/s00382-006-0111-2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1021690503 |
183 | ″ | ″ | https://doi.org/10.1007/s00382-006-0111-2 |
184 | ″ | rdf:type | schema:CreativeWork |
185 | sg:pub.10.1007/s00382-006-0125-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027942190 |
186 | ″ | ″ | https://doi.org/10.1007/s00382-006-0125-9 |
187 | ″ | rdf:type | schema:CreativeWork |
188 | sg:pub.10.1007/s003820000067 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1022442065 |
189 | ″ | ″ | https://doi.org/10.1007/s003820000067 |
190 | ″ | rdf:type | schema:CreativeWork |
191 | sg:pub.10.1038/nature02771 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1036499414 |
192 | ″ | ″ | https://doi.org/10.1038/nature02771 |
193 | ″ | rdf:type | schema:CreativeWork |
194 | grid-institutes:grid.17100.37 | schema:alternateName | Met Office Hadley Centre, Exeter, UK |
195 | ″ | schema:name | Met Office Hadley Centre, Exeter, UK |
196 | ″ | rdf:type | schema:Organization |
197 | grid-institutes:grid.9435.b | schema:alternateName | Walker Institute for Climate System Research, Department of Meteorology, University of Reading, Earley Gate, PO Box 243, RG6 6BB, Reading, UK |
198 | ″ | schema:name | Met Office Hadley Centre, Exeter, UK |
199 | ″ | ″ | Walker Institute for Climate System Research, Department of Meteorology, University of Reading, Earley Gate, PO Box 243, RG6 6BB, Reading, UK |
200 | ″ | rdf:type | schema:Organization |