Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-07-03

AUTHORS

Benjamin M. Sanderson, C. Piani, W. J. Ingram, D. A. Stone, M. R. Allen

ABSTRACT

A linear analysis is applied to a multi-thousand member “perturbed physics" GCM ensemble to identify the dominant physical processes responsible for variation in climate sensitivity across the ensemble. Model simulations are provided by the distributed computing project, climate prediction.net . A principal component analysis of model radiative response reveals two dominant independent feedback processes, each largely controlled by a single parameter change. The leading EOF was well correlated with the value of the entrainment coefficient—a parameter in the model’s atmospheric convection scheme. Reducing this parameter increases high vertical level moisture causing an enhanced clear sky greenhouse effect both in the control simulation and in the response to greenhouse gas forcing. This effect is compensated by an increase in reflected solar radiation from low level cloud upon warming. A set of ‘secondary’ cloud formation parameters partly modulate the degree of shortwave compensation from low cloud formation. The second EOF was correlated with the scaling of ice fall speed in clouds which affects the extent of cloud cover in the control simulation. The most prominent feature in the EOF was an increase in longwave cloud forcing. The two leading EOFs account for 70% of the ensemble variance in λ—the global feedback parameter. Linear predictors of feedback strength from model climatology are applied to observational datasets to estimate real world values of the overall climate feedback parameter. The predictors are found using correlations across the ensemble. Differences between predictions are largely due to the differences in observational estimates for top of atmosphere shortwave fluxes. Our validation does not rule out all the strong tropical convective feedbacks leading to a large climate sensitivity. More... »

PAGES

175-190

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-007-0280-7

DOI

http://dx.doi.org/10.1007/s00382-007-0280-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043959932


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "AOPP, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, OX1 3PU, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "AOPP, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, OX1 3PU, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanderson", 
        "givenName": "Benjamin M.", 
        "id": "sg:person.015440676217.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440676217.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Center for Theoretical Physics, Trieste, Italy", 
          "id": "http://www.grid.ac/institutes/grid.419330.c", 
          "name": [
            "International Center for Theoretical Physics, Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Piani", 
        "givenName": "C.", 
        "id": "sg:person.016370414215.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016370414215.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Meteorological Office, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "AOPP, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, OX1 3PU, Oxford, UK", 
            "Meteorological Office, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ingram", 
        "givenName": "W. J.", 
        "id": "sg:person.014131530715.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014131530715.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tyndall Centre for Climate Change Research, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "AOPP, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, OX1 3PU, Oxford, UK", 
            "Tyndall Centre for Climate Change Research, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stone", 
        "givenName": "D. A.", 
        "id": "sg:person.012044260032.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012044260032.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AOPP, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, OX1 3PU, Oxford, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "AOPP, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, OX1 3PU, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Allen", 
        "givenName": "M. R.", 
        "id": "sg:person.0600474550.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600474550.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/pl00013733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049849175", 
          "https://doi.org/10.1007/pl00013733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00216271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022795012", 
          "https://doi.org/10.1007/bf00216271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036499414", 
          "https://doi.org/10.1038/nature02771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030001284", 
          "https://doi.org/10.1038/nature03301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/386665b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040233966", 
          "https://doi.org/10.1038/386665b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35036559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016303772", 
          "https://doi.org/10.1038/35036559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-006-0111-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021690503", 
          "https://doi.org/10.1007/s00382-006-0111-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01092a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044980256", 
          "https://doi.org/10.1038/nature01092a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002170907", 
          "https://doi.org/10.1007/s003820050009"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-07-03", 
    "datePublishedReg": "2007-07-03", 
    "description": "A linear analysis is applied to a multi-thousand member \u201cperturbed physics\" GCM ensemble to identify the dominant physical processes responsible for variation in climate sensitivity across the ensemble. Model simulations are provided by the distributed computing project, climate prediction.net . A principal component analysis of model radiative response reveals two dominant independent feedback processes, each largely controlled by a single parameter change. The leading EOF was well correlated with the value of the entrainment coefficient\u2014a parameter in the model\u2019s atmospheric convection scheme. Reducing this parameter increases high vertical level moisture causing an enhanced clear sky greenhouse effect both in the control simulation and in the response to greenhouse gas forcing. This effect is compensated by an increase in reflected solar radiation from low level cloud upon warming. A set of \u2018secondary\u2019 cloud formation parameters partly modulate the degree of shortwave compensation from low cloud formation. The second EOF was correlated with the scaling of ice fall speed in clouds which affects the extent of cloud cover in the control simulation. The most prominent feature in the EOF was an increase in longwave cloud forcing. The two leading EOFs account for 70% of the ensemble variance in \u03bb\u2014the global feedback parameter. Linear predictors of feedback strength from model climatology are applied to observational datasets to estimate real world values of the overall climate feedback parameter. The predictors are found using correlations across the ensemble. Differences between predictions are largely due to the differences in observational estimates for top of atmosphere shortwave fluxes. Our validation does not rule out all the strong tropical convective feedbacks leading to a large climate sensitivity.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-007-0280-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "keywords": [
      "climate sensitivity", 
      "control simulation", 
      "clear-sky greenhouse effect", 
      "ice fall speed", 
      "greenhouse gas forcing", 
      "low cloud formation", 
      "climate feedback parameter", 
      "larger climate sensitivities", 
      "low-level clouds", 
      "dominant physical processes", 
      "reflected solar radiation", 
      "feedback parameters", 
      "gas forcing", 
      "perturbed physics", 
      "GCM ensemble", 
      "longwave cloud", 
      "model climatology", 
      "second EOF", 
      "GCM simulations", 
      "shortwave flux", 
      "radiative response", 
      "convection scheme", 
      "convective feedback", 
      "cloud formation", 
      "observational datasets", 
      "level clouds", 
      "observational estimates", 
      "cloud cover", 
      "model simulations", 
      "fall speed", 
      "greenhouse effect", 
      "ensemble variance", 
      "physical processes", 
      "EOF", 
      "feedback processes", 
      "solar radiation", 
      "feedback strength", 
      "entrainment coefficient", 
      "feedback patterns", 
      "cloud", 
      "ensemble", 
      "world values", 
      "principal component analysis", 
      "climatology", 
      "forcing", 
      "warming", 
      "prominent feature", 
      "cover", 
      "moisture", 
      "formation parameters", 
      "flux", 
      "component analysis", 
      "single parameter change", 
      "real-world value", 
      "top", 
      "simulations", 
      "estimates", 
      "variation", 
      "formation", 
      "process", 
      "dataset", 
      "values", 
      "patterns", 
      "thousands", 
      "changes", 
      "radiation", 
      "linear analysis", 
      "parameters", 
      "feedback", 
      "increase", 
      "extent", 
      "prediction", 
      "analysis", 
      "correlation", 
      "parameter changes", 
      "physics", 
      "features", 
      "sensitivity", 
      "speed", 
      "project", 
      "validation", 
      "variance", 
      "differences", 
      "response", 
      "scaling", 
      "coefficient", 
      "set", 
      "degree", 
      "effect", 
      "strength", 
      "scheme", 
      "members", 
      "linear predictor", 
      "predictors", 
      "compensation", 
      "computing projects"
    ], 
    "name": "Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations", 
    "pagination": "175-190", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043959932"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-007-0280-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-007-0280-7", 
      "https://app.dimensions.ai/details/publication/pub.1043959932"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_433.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-007-0280-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-007-0280-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-007-0280-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-007-0280-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-007-0280-7'


 

This table displays all metadata directly associated to this object as RDF triples.

229 TRIPLES      22 PREDICATES      130 URIs      113 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-007-0280-7 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N5a85d7f1f6074708b862dabd8d1b37e9
4 schema:citation sg:pub.10.1007/bf00216271
5 sg:pub.10.1007/pl00013733
6 sg:pub.10.1007/s00382-006-0111-2
7 sg:pub.10.1007/s003820050009
8 sg:pub.10.1038/35036559
9 sg:pub.10.1038/386665b0
10 sg:pub.10.1038/nature01092a
11 sg:pub.10.1038/nature02771
12 sg:pub.10.1038/nature03301
13 schema:datePublished 2007-07-03
14 schema:datePublishedReg 2007-07-03
15 schema:description A linear analysis is applied to a multi-thousand member “perturbed physics" GCM ensemble to identify the dominant physical processes responsible for variation in climate sensitivity across the ensemble. Model simulations are provided by the distributed computing project, climate prediction.net . A principal component analysis of model radiative response reveals two dominant independent feedback processes, each largely controlled by a single parameter change. The leading EOF was well correlated with the value of the entrainment coefficient—a parameter in the model’s atmospheric convection scheme. Reducing this parameter increases high vertical level moisture causing an enhanced clear sky greenhouse effect both in the control simulation and in the response to greenhouse gas forcing. This effect is compensated by an increase in reflected solar radiation from low level cloud upon warming. A set of ‘secondary’ cloud formation parameters partly modulate the degree of shortwave compensation from low cloud formation. The second EOF was correlated with the scaling of ice fall speed in clouds which affects the extent of cloud cover in the control simulation. The most prominent feature in the EOF was an increase in longwave cloud forcing. The two leading EOFs account for 70% of the ensemble variance in λ—the global feedback parameter. Linear predictors of feedback strength from model climatology are applied to observational datasets to estimate real world values of the overall climate feedback parameter. The predictors are found using correlations across the ensemble. Differences between predictions are largely due to the differences in observational estimates for top of atmosphere shortwave fluxes. Our validation does not rule out all the strong tropical convective feedbacks leading to a large climate sensitivity.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf Ne15261ba6d69465b9213ba4bf594745e
20 Nf3586d8abacc4207b0eb2170cf37b65b
21 sg:journal.1049631
22 schema:keywords EOF
23 GCM ensemble
24 GCM simulations
25 analysis
26 changes
27 clear-sky greenhouse effect
28 climate feedback parameter
29 climate sensitivity
30 climatology
31 cloud
32 cloud cover
33 cloud formation
34 coefficient
35 compensation
36 component analysis
37 computing projects
38 control simulation
39 convection scheme
40 convective feedback
41 correlation
42 cover
43 dataset
44 degree
45 differences
46 dominant physical processes
47 effect
48 ensemble
49 ensemble variance
50 entrainment coefficient
51 estimates
52 extent
53 fall speed
54 features
55 feedback
56 feedback parameters
57 feedback patterns
58 feedback processes
59 feedback strength
60 flux
61 forcing
62 formation
63 formation parameters
64 gas forcing
65 greenhouse effect
66 greenhouse gas forcing
67 ice fall speed
68 increase
69 larger climate sensitivities
70 level clouds
71 linear analysis
72 linear predictor
73 longwave cloud
74 low cloud formation
75 low-level clouds
76 members
77 model climatology
78 model simulations
79 moisture
80 observational datasets
81 observational estimates
82 parameter changes
83 parameters
84 patterns
85 perturbed physics
86 physical processes
87 physics
88 prediction
89 predictors
90 principal component analysis
91 process
92 project
93 prominent feature
94 radiation
95 radiative response
96 real-world value
97 reflected solar radiation
98 response
99 scaling
100 scheme
101 second EOF
102 sensitivity
103 set
104 shortwave flux
105 simulations
106 single parameter change
107 solar radiation
108 speed
109 strength
110 thousands
111 top
112 validation
113 values
114 variance
115 variation
116 warming
117 world values
118 schema:name Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations
119 schema:pagination 175-190
120 schema:productId Na138fdc6cfc54f7fb2a232129158219a
121 Nc37f06eff7c64d6f82b558b18dbe8937
122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043959932
123 https://doi.org/10.1007/s00382-007-0280-7
124 schema:sdDatePublished 2022-06-01T22:07
125 schema:sdLicense https://scigraph.springernature.com/explorer/license/
126 schema:sdPublisher Nd01ca0570e474b718aa4dcddc63ff00f
127 schema:url https://doi.org/10.1007/s00382-007-0280-7
128 sgo:license sg:explorer/license/
129 sgo:sdDataset articles
130 rdf:type schema:ScholarlyArticle
131 N52146caacab34432a1a0822540f8c4ee rdf:first sg:person.014131530715.33
132 rdf:rest N958f131ddf1444c68c9dc45be8420b4c
133 N5a85d7f1f6074708b862dabd8d1b37e9 rdf:first sg:person.015440676217.87
134 rdf:rest N7cdffb39e31b467cbce26c58a72a3e41
135 N7cdffb39e31b467cbce26c58a72a3e41 rdf:first sg:person.016370414215.32
136 rdf:rest N52146caacab34432a1a0822540f8c4ee
137 N958f131ddf1444c68c9dc45be8420b4c rdf:first sg:person.012044260032.31
138 rdf:rest Nc717ab0b784d4009a4db9fd1965ff7dc
139 Na138fdc6cfc54f7fb2a232129158219a schema:name doi
140 schema:value 10.1007/s00382-007-0280-7
141 rdf:type schema:PropertyValue
142 Nc37f06eff7c64d6f82b558b18dbe8937 schema:name dimensions_id
143 schema:value pub.1043959932
144 rdf:type schema:PropertyValue
145 Nc717ab0b784d4009a4db9fd1965ff7dc rdf:first sg:person.0600474550.17
146 rdf:rest rdf:nil
147 Nd01ca0570e474b718aa4dcddc63ff00f schema:name Springer Nature - SN SciGraph project
148 rdf:type schema:Organization
149 Ne15261ba6d69465b9213ba4bf594745e schema:volumeNumber 30
150 rdf:type schema:PublicationVolume
151 Nf3586d8abacc4207b0eb2170cf37b65b schema:issueNumber 2-3
152 rdf:type schema:PublicationIssue
153 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
154 schema:name Earth Sciences
155 rdf:type schema:DefinedTerm
156 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
157 schema:name Atmospheric Sciences
158 rdf:type schema:DefinedTerm
159 sg:journal.1049631 schema:issn 0930-7575
160 1432-0894
161 schema:name Climate Dynamics
162 schema:publisher Springer Nature
163 rdf:type schema:Periodical
164 sg:person.012044260032.31 schema:affiliation grid-institutes:None
165 schema:familyName Stone
166 schema:givenName D. A.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012044260032.31
168 rdf:type schema:Person
169 sg:person.014131530715.33 schema:affiliation grid-institutes:grid.17100.37
170 schema:familyName Ingram
171 schema:givenName W. J.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014131530715.33
173 rdf:type schema:Person
174 sg:person.015440676217.87 schema:affiliation grid-institutes:grid.4991.5
175 schema:familyName Sanderson
176 schema:givenName Benjamin M.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440676217.87
178 rdf:type schema:Person
179 sg:person.016370414215.32 schema:affiliation grid-institutes:grid.419330.c
180 schema:familyName Piani
181 schema:givenName C.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016370414215.32
183 rdf:type schema:Person
184 sg:person.0600474550.17 schema:affiliation grid-institutes:grid.4991.5
185 schema:familyName Allen
186 schema:givenName M. R.
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600474550.17
188 rdf:type schema:Person
189 sg:pub.10.1007/bf00216271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022795012
190 https://doi.org/10.1007/bf00216271
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/pl00013733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049849175
193 https://doi.org/10.1007/pl00013733
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s00382-006-0111-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021690503
196 https://doi.org/10.1007/s00382-006-0111-2
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s003820050009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002170907
199 https://doi.org/10.1007/s003820050009
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/35036559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016303772
202 https://doi.org/10.1038/35036559
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/386665b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040233966
205 https://doi.org/10.1038/386665b0
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/nature01092a schema:sameAs https://app.dimensions.ai/details/publication/pub.1044980256
208 https://doi.org/10.1038/nature01092a
209 rdf:type schema:CreativeWork
210 sg:pub.10.1038/nature02771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036499414
211 https://doi.org/10.1038/nature02771
212 rdf:type schema:CreativeWork
213 sg:pub.10.1038/nature03301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030001284
214 https://doi.org/10.1038/nature03301
215 rdf:type schema:CreativeWork
216 grid-institutes:None schema:alternateName Tyndall Centre for Climate Change Research, Oxford, UK
217 schema:name AOPP, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, OX1 3PU, Oxford, UK
218 Tyndall Centre for Climate Change Research, Oxford, UK
219 rdf:type schema:Organization
220 grid-institutes:grid.17100.37 schema:alternateName Meteorological Office, Exeter, UK
221 schema:name AOPP, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, OX1 3PU, Oxford, UK
222 Meteorological Office, Exeter, UK
223 rdf:type schema:Organization
224 grid-institutes:grid.419330.c schema:alternateName International Center for Theoretical Physics, Trieste, Italy
225 schema:name International Center for Theoretical Physics, Trieste, Italy
226 rdf:type schema:Organization
227 grid-institutes:grid.4991.5 schema:alternateName AOPP, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, OX1 3PU, Oxford, UK
228 schema:name AOPP, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, OX1 3PU, Oxford, UK
229 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...