Impact of different convective cloud schemes on the simulation of the tropical seasonal cycle in a coupled ocean–atmosphere model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2007-04-11

AUTHORS

P. Braconnot, F. Hourdin, S. Bony, J. L. Dufresne, J. Y. Grandpeix, O. Marti

ABSTRACT

The simulation of the mean seasonal cycle of sea surface temperature (SST) remains a challenge for coupled ocean–atmosphere general circulation models (OAGCMs). Here we investigate how the numerical representation of clouds and convection affects the simulation of the seasonal variations of tropical SST. For this purpose, we compare simulations performed with two versions of the same OAGCM differing only by their convection and cloud schemes. Most of the atmospheric temperature and precipitation differences between the two simulations reflect differences found in atmosphere-alone simulations. They affect the ocean interior down to 1,000 m. Substantial differences are found between the two coupled simulations in the seasonal march of the Intertropical Convergence Zone in the eastern part of the Pacific and Atlantic basins, where the equatorial upwelling develops. The results confirm that the distribution of atmospheric convection between ocean and land during the American and African boreal summer monsoons plays a key role in maintaining a cross equatorial flow and a strong windstress along the equator, and thereby the equatorial upwelling. Feedbacks between convection, large-scale circulation, SST and clouds are highlighted from the differences between the two simulations. In one case, these feedbacks maintain the ITCZ in a quite realistic position, whereas in the other case the ITCZ is located too far south close to the equator. More... »

PAGES

501-520

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-007-0244-y

DOI

http://dx.doi.org/10.1007/s00382-007-0244-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023254673


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IPSL/LSCE, unit\u00e9 mixte CEA-CNRS-UVSQ, B\u00e2t.712, Orme des Merisiers, 91191, Gif-sur-Yvette Cedex, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "IPSL/LSCE, unit\u00e9 mixte CEA-CNRS-UVSQ, B\u00e2t.712, Orme des Merisiers, 91191, Gif-sur-Yvette Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Braconnot", 
        "givenName": "P.", 
        "id": "sg:person.014515414211.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014515414211.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IPSL/LMD, Unit\u00e9 mixte CNRS-Ecole Polytechnique-ENS-UPMC, case 99, 4 Place Jussieu, 75252, Paris cedex 05, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "IPSL/LMD, Unit\u00e9 mixte CNRS-Ecole Polytechnique-ENS-UPMC, case 99, 4 Place Jussieu, 75252, Paris cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hourdin", 
        "givenName": "F.", 
        "id": "sg:person.016441554113.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016441554113.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IPSL/LMD, Unit\u00e9 mixte CNRS-Ecole Polytechnique-ENS-UPMC, case 99, 4 Place Jussieu, 75252, Paris cedex 05, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "IPSL/LMD, Unit\u00e9 mixte CNRS-Ecole Polytechnique-ENS-UPMC, case 99, 4 Place Jussieu, 75252, Paris cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bony", 
        "givenName": "S.", 
        "id": "sg:person.013647160343.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IPSL/LMD, Unit\u00e9 mixte CNRS-Ecole Polytechnique-ENS-UPMC, case 99, 4 Place Jussieu, 75252, Paris cedex 05, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "IPSL/LMD, Unit\u00e9 mixte CNRS-Ecole Polytechnique-ENS-UPMC, case 99, 4 Place Jussieu, 75252, Paris cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dufresne", 
        "givenName": "J. L.", 
        "id": "sg:person.01075255253.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075255253.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IPSL/LMD, Unit\u00e9 mixte CNRS-Ecole Polytechnique-ENS-UPMC, case 99, 4 Place Jussieu, 75252, Paris cedex 05, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "IPSL/LMD, Unit\u00e9 mixte CNRS-Ecole Polytechnique-ENS-UPMC, case 99, 4 Place Jussieu, 75252, Paris cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grandpeix", 
        "givenName": "J. Y.", 
        "id": "sg:person.014007302547.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014007302547.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IPSL/LSCE, unit\u00e9 mixte CEA-CNRS-UVSQ, B\u00e2t.712, Orme des Merisiers, 91191, Gif-sur-Yvette Cedex, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "IPSL/LSCE, unit\u00e9 mixte CEA-CNRS-UVSQ, B\u00e2t.712, Orme des Merisiers, 91191, Gif-sur-Yvette Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marti", 
        "givenName": "O.", 
        "id": "sg:person.012651126667.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012651126667.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00382-006-0158-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016287495", 
          "https://doi.org/10.1007/s00382-006-0158-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00210625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039099265", 
          "https://doi.org/10.1007/bf00210625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-003-0369-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014795140", 
          "https://doi.org/10.1007/s00382-003-0369-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-001-0188-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028041954", 
          "https://doi.org/10.1007/s00382-001-0188-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820100174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048195092", 
          "https://doi.org/10.1007/s003820100174"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-04-11", 
    "datePublishedReg": "2007-04-11", 
    "description": "The simulation of the mean seasonal cycle of sea surface temperature (SST) remains a challenge for coupled ocean\u2013atmosphere general circulation models (OAGCMs). Here we investigate how the numerical representation of clouds and convection affects the simulation of the seasonal variations of tropical SST. For this purpose, we compare simulations performed with two versions of the same OAGCM differing only by their convection and cloud schemes. Most of the atmospheric temperature and precipitation differences between the two simulations reflect differences found in atmosphere-alone simulations. They affect the ocean interior down to 1,000\u00a0m. Substantial differences are found between the two coupled simulations in the seasonal march of the Intertropical Convergence Zone in the eastern part of the Pacific and Atlantic basins, where the equatorial upwelling develops. The results confirm that the distribution of atmospheric convection between ocean and land during the American and African boreal summer monsoons plays a key role in maintaining a cross equatorial flow and a strong windstress along the equator, and thereby the equatorial upwelling. Feedbacks between convection, large-scale circulation, SST and clouds are highlighted from the differences between the two simulations. In one case, these feedbacks maintain the ITCZ in a quite realistic position, whereas in the other case the ITCZ is located too far south close to the equator.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-007-0244-y", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "keywords": [
      "ocean-atmosphere general circulation model", 
      "sea surface temperature", 
      "equatorial upwelling", 
      "cloud scheme", 
      "seasonal cycle", 
      "tropical sea surface temperatures", 
      "boreal summer monsoon", 
      "ocean-atmosphere model", 
      "mean seasonal cycle", 
      "Intertropical Convergence Zone", 
      "general circulation model", 
      "cross-equatorial flow", 
      "large-scale circulation", 
      "ocean interior", 
      "summer monsoon", 
      "seasonal march", 
      "convergence zone", 
      "circulation model", 
      "Atlantic basin", 
      "atmospheric convection", 
      "precipitation differences", 
      "eastern part", 
      "equatorial flow", 
      "surface temperature", 
      "atmospheric temperature", 
      "seasonal variation", 
      "ITCZ", 
      "upwelling", 
      "convection", 
      "equator", 
      "realistic position", 
      "cloud", 
      "monsoon", 
      "Ocean", 
      "windstress", 
      "basin", 
      "Pacific", 
      "zone", 
      "circulation", 
      "cycle", 
      "interior", 
      "numerical representation", 
      "land", 
      "substantial differences", 
      "simulations", 
      "temperature", 
      "feedback", 
      "variation", 
      "flow", 
      "model", 
      "distribution", 
      "part", 
      "key role", 
      "impact", 
      "differences", 
      "scheme", 
      "position", 
      "results", 
      "representation", 
      "version", 
      "role", 
      "cases", 
      "challenges", 
      "purpose"
    ], 
    "name": "Impact of different convective cloud schemes on the simulation of the tropical seasonal cycle in a coupled ocean\u2013atmosphere model", 
    "pagination": "501-520", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023254673"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-007-0244-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-007-0244-y", 
      "https://app.dimensions.ai/details/publication/pub.1023254673"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_429.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-007-0244-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-007-0244-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-007-0244-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-007-0244-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-007-0244-y'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      94 URIs      80 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-007-0244-y schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0405
4 schema:author Ndb0bc22875a4416fa54b3e80d24747b0
5 schema:citation sg:pub.10.1007/bf00210625
6 sg:pub.10.1007/s00382-001-0188-6
7 sg:pub.10.1007/s00382-003-0369-6
8 sg:pub.10.1007/s00382-006-0158-0
9 sg:pub.10.1007/s003820100174
10 schema:datePublished 2007-04-11
11 schema:datePublishedReg 2007-04-11
12 schema:description The simulation of the mean seasonal cycle of sea surface temperature (SST) remains a challenge for coupled ocean–atmosphere general circulation models (OAGCMs). Here we investigate how the numerical representation of clouds and convection affects the simulation of the seasonal variations of tropical SST. For this purpose, we compare simulations performed with two versions of the same OAGCM differing only by their convection and cloud schemes. Most of the atmospheric temperature and precipitation differences between the two simulations reflect differences found in atmosphere-alone simulations. They affect the ocean interior down to 1,000 m. Substantial differences are found between the two coupled simulations in the seasonal march of the Intertropical Convergence Zone in the eastern part of the Pacific and Atlantic basins, where the equatorial upwelling develops. The results confirm that the distribution of atmospheric convection between ocean and land during the American and African boreal summer monsoons plays a key role in maintaining a cross equatorial flow and a strong windstress along the equator, and thereby the equatorial upwelling. Feedbacks between convection, large-scale circulation, SST and clouds are highlighted from the differences between the two simulations. In one case, these feedbacks maintain the ITCZ in a quite realistic position, whereas in the other case the ITCZ is located too far south close to the equator.
13 schema:genre article
14 schema:isAccessibleForFree true
15 schema:isPartOf N4ad52ad28a2f4de19139c6734e32f51a
16 Ne14d7e4e450e4378bf51071ae3c032a9
17 sg:journal.1049631
18 schema:keywords Atlantic basin
19 ITCZ
20 Intertropical Convergence Zone
21 Ocean
22 Pacific
23 atmospheric convection
24 atmospheric temperature
25 basin
26 boreal summer monsoon
27 cases
28 challenges
29 circulation
30 circulation model
31 cloud
32 cloud scheme
33 convection
34 convergence zone
35 cross-equatorial flow
36 cycle
37 differences
38 distribution
39 eastern part
40 equator
41 equatorial flow
42 equatorial upwelling
43 feedback
44 flow
45 general circulation model
46 impact
47 interior
48 key role
49 land
50 large-scale circulation
51 mean seasonal cycle
52 model
53 monsoon
54 numerical representation
55 ocean interior
56 ocean-atmosphere general circulation model
57 ocean-atmosphere model
58 part
59 position
60 precipitation differences
61 purpose
62 realistic position
63 representation
64 results
65 role
66 scheme
67 sea surface temperature
68 seasonal cycle
69 seasonal march
70 seasonal variation
71 simulations
72 substantial differences
73 summer monsoon
74 surface temperature
75 temperature
76 tropical sea surface temperatures
77 upwelling
78 variation
79 version
80 windstress
81 zone
82 schema:name Impact of different convective cloud schemes on the simulation of the tropical seasonal cycle in a coupled ocean–atmosphere model
83 schema:pagination 501-520
84 schema:productId N0016925dcff242b3ac57e30d61de8b87
85 Nda49029e17594098946c884cefd3b1cd
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023254673
87 https://doi.org/10.1007/s00382-007-0244-y
88 schema:sdDatePublished 2022-12-01T06:26
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N1ff047cea1ee4ce78d12ee85ca9a0f5d
91 schema:url https://doi.org/10.1007/s00382-007-0244-y
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N0016925dcff242b3ac57e30d61de8b87 schema:name dimensions_id
96 schema:value pub.1023254673
97 rdf:type schema:PropertyValue
98 N1ff047cea1ee4ce78d12ee85ca9a0f5d schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N32fad1101b1e41458de60811eb309b1c rdf:first sg:person.016441554113.45
101 rdf:rest N810b0a29a6dc431ca39f1988563a7917
102 N4ad52ad28a2f4de19139c6734e32f51a schema:issueNumber 5
103 rdf:type schema:PublicationIssue
104 N810b0a29a6dc431ca39f1988563a7917 rdf:first sg:person.013647160343.22
105 rdf:rest Ne9227bbb0a4e40b49cfc2d4c0a2a4077
106 Na910f71109164d62bd178661d2262011 rdf:first sg:person.012651126667.47
107 rdf:rest rdf:nil
108 Nc0781f3c97314a1fb6c23b2baf6155d4 rdf:first sg:person.014007302547.39
109 rdf:rest Na910f71109164d62bd178661d2262011
110 Nda49029e17594098946c884cefd3b1cd schema:name doi
111 schema:value 10.1007/s00382-007-0244-y
112 rdf:type schema:PropertyValue
113 Ndb0bc22875a4416fa54b3e80d24747b0 rdf:first sg:person.014515414211.47
114 rdf:rest N32fad1101b1e41458de60811eb309b1c
115 Ne14d7e4e450e4378bf51071ae3c032a9 schema:volumeNumber 29
116 rdf:type schema:PublicationVolume
117 Ne9227bbb0a4e40b49cfc2d4c0a2a4077 rdf:first sg:person.01075255253.14
118 rdf:rest Nc0781f3c97314a1fb6c23b2baf6155d4
119 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
120 schema:name Earth Sciences
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
123 schema:name Atmospheric Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
126 schema:name Oceanography
127 rdf:type schema:DefinedTerm
128 sg:journal.1049631 schema:issn 0930-7575
129 1432-0894
130 schema:name Climate Dynamics
131 schema:publisher Springer Nature
132 rdf:type schema:Periodical
133 sg:person.01075255253.14 schema:affiliation grid-institutes:None
134 schema:familyName Dufresne
135 schema:givenName J. L.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075255253.14
137 rdf:type schema:Person
138 sg:person.012651126667.47 schema:affiliation grid-institutes:None
139 schema:familyName Marti
140 schema:givenName O.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012651126667.47
142 rdf:type schema:Person
143 sg:person.013647160343.22 schema:affiliation grid-institutes:None
144 schema:familyName Bony
145 schema:givenName S.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22
147 rdf:type schema:Person
148 sg:person.014007302547.39 schema:affiliation grid-institutes:None
149 schema:familyName Grandpeix
150 schema:givenName J. Y.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014007302547.39
152 rdf:type schema:Person
153 sg:person.014515414211.47 schema:affiliation grid-institutes:None
154 schema:familyName Braconnot
155 schema:givenName P.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014515414211.47
157 rdf:type schema:Person
158 sg:person.016441554113.45 schema:affiliation grid-institutes:None
159 schema:familyName Hourdin
160 schema:givenName F.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016441554113.45
162 rdf:type schema:Person
163 sg:pub.10.1007/bf00210625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039099265
164 https://doi.org/10.1007/bf00210625
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s00382-001-0188-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028041954
167 https://doi.org/10.1007/s00382-001-0188-6
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s00382-003-0369-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014795140
170 https://doi.org/10.1007/s00382-003-0369-6
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s00382-006-0158-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016287495
173 https://doi.org/10.1007/s00382-006-0158-0
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s003820100174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048195092
176 https://doi.org/10.1007/s003820100174
177 rdf:type schema:CreativeWork
178 grid-institutes:None schema:alternateName IPSL/LMD, Unité mixte CNRS-Ecole Polytechnique-ENS-UPMC, case 99, 4 Place Jussieu, 75252, Paris cedex 05, France
179 IPSL/LSCE, unité mixte CEA-CNRS-UVSQ, Bât.712, Orme des Merisiers, 91191, Gif-sur-Yvette Cedex, France
180 schema:name IPSL/LMD, Unité mixte CNRS-Ecole Polytechnique-ENS-UPMC, case 99, 4 Place Jussieu, 75252, Paris cedex 05, France
181 IPSL/LSCE, unité mixte CEA-CNRS-UVSQ, Bât.712, Orme des Merisiers, 91191, Gif-sur-Yvette Cedex, France
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...