RegCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fields View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-04

AUTHORS

Anji Seth, Sara A. Rauscher, Suzana J. Camargo, Jian-Hua Qian, J. S. Pal

ABSTRACT

To enable downscaling of seasonal prediction and climate change scenarios, long-term baseline regional climatologies which employ global model forcing are needed for South America. As a first step in this process, this work examines climatological integrations with a regional climate model using a continental scale domain nested in both reanalysis data and multiple realizations of an atmospheric general circulation model (GCM). The analysis presents an evaluation of the nested model simulated large scale circulation, mean annual cycle and interannual variability which is compared against observational estimates and also with the driving GCM for the Northeast, Amazon, Monsoon and Southeast regions of South America. Results indicate that the regional climate model simulates the annual cycle of precipitation well in the Northeast region and Monsoon regions; it exhibits a dry bias during winter (July–September) in the Southeast, and simulates a semi-annual cycle with a dry bias in summer (December–February) in the Amazon region. There is little difference in the annual cycle between the GCM and renalyses driven simulations, however, substantial differences are seen in the interannual variability. Despite the biases in the annual cycle, the regional model captures much of the interannual variability observed in the Northeast, Southeast and Amazon regions. In the Monsoon region, where remote influences are weak, the regional model improves upon the GCM, though neither show substantial predictability. We conclude that in regions where remote influences are strong and the global model performs well it is difficult for the regional model to improve the large scale climatological features, indeed the regional model may degrade the simulation. Where remote forcing is weak and local processes dominate, there is some potential for the regional model to add value. This, however, will require improvments in physical parameterizations for high resolution tropical simulations. More... »

PAGES

461-480

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-006-0191-z

DOI

http://dx.doi.org/10.1007/s00382-006-0191-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000774720


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Connecticut", 
          "id": "https://www.grid.ac/institutes/grid.63054.34", 
          "name": [
            "International Research Institute for Climate Prediction, Columbia University, 61 Route 9W, Monell Building, 10964, Palisades, NY, USA", 
            "Department of Geography, University of Connecticut, Storrs, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seth", 
        "givenName": "Anji", 
        "id": "sg:person.014214450302.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014214450302.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Centre for Theoretical Physics", 
          "id": "https://www.grid.ac/institutes/grid.419330.c", 
          "name": [
            "International Research Institute for Climate Prediction, Columbia University, 61 Route 9W, Monell Building, 10964, Palisades, NY, USA", 
            "Earth Systems Physics, International Center for Theoretical Physics, Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rauscher", 
        "givenName": "Sara A.", 
        "id": "sg:person.011273455713.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011273455713.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "International Research Institute for Climate Prediction, Columbia University, 61 Route 9W, Monell Building, 10964, Palisades, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Camargo", 
        "givenName": "Suzana J.", 
        "id": "sg:person.014760641236.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014760641236.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Columbia University", 
          "id": "https://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "International Research Institute for Climate Prediction, Columbia University, 61 Route 9W, Monell Building, 10964, Palisades, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qian", 
        "givenName": "Jian-Hua", 
        "id": "sg:person.014613765015.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014613765015.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Centre for Theoretical Physics", 
          "id": "https://www.grid.ac/institutes/grid.419330.c", 
          "name": [
            "Earth Systems Physics, International Center for Theoretical Physics, Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pal", 
        "givenName": "J. S.", 
        "id": "sg:person.010366771647.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010366771647.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00704-005-0202-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001001231", 
          "https://doi.org/10.1007/s00704-005-0202-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-005-0202-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001001231", 
          "https://doi.org/10.1007/s00704-005-0202-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-935704-13-3_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001583813", 
          "https://doi.org/10.1007/978-1-935704-13-3_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/94jd01720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003003709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2000jd900415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004042180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1998)011<1307:tlscot>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004301855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(2002)130<0684:cssswo>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005888604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-004-0045-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006772618", 
          "https://doi.org/10.1007/s00704-004-0045-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2003)016<2437:sasian>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009102838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1998)011<3204:vhrrcs>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009846552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.49711951209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010516094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(2000)128<2947:iaivot>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010958640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011849757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1999)056<1766:daeoac>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012490332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2002eo000094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012926577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0477(2001)082<2787:ddoscp>2.3.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015287900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2003)016<2454:sasian>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015926930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2001)014<2710:mmsote>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016484879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1981)038<2653:otdodi>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017328267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2003)016<0263:teniot>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018358439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1989)117<1779:acmfsf>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020057497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1996)009<0840:aogmpu>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020348944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1974)031<0674:ioacce>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021101908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-8181(94)00020-e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021890669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2002)015<0745:votsac>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022679507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005jd005980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023488128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005jd005980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023488128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2002)015<1609:aiisas>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025644996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2004gl019836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026914505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(2004)132<0003:mftraw>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027844408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1997)125<0279:awadco>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028372007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2003jd004495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029473590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:clim.0000013692.50640.55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029484467", 
          "https://doi.org/10.1023/b:clim.0000013692.50640.55"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0309-1708(94)90027-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030265189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0309-1708(94)90027-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030265189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-003-0346-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030685409", 
          "https://doi.org/10.1007/s00382-003-0346-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2151/jmsj.82.1599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030947595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-006-0206-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031028695", 
          "https://doi.org/10.1007/s00704-006-0206-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00704-006-0206-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031028695", 
          "https://doi.org/10.1007/s00704-006-0206-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1987)115<1606:garspp>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031933756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1994)007<0375:rccsot>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032262149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2002)015<2965:gcfias>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033336233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.49710343505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035524796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1998)011<2628:iobaaf>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037136199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2004jd005415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038509406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2004jd005415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038509406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820000085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039433364", 
          "https://doi.org/10.1007/s003820000085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(2000)128<3664:asntfd>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041635431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2002)015<3123:tlscot>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041828858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-3266.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042866161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2000jd000270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043480169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2004jd004721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045025477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-004-0409-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045517326", 
          "https://doi.org/10.1007/s00382-004-0409-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-004-0409-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045517326", 
          "https://doi.org/10.1007/s00382-004-0409-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(2004)017<0088:tsaczi>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047365283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1991)048<2313:asfrcc>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047848473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3715.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048459474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-8181(02)00207-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050430099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-8181(02)00207-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050430099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1115898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062452483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0442(1993)006<1825:lvnbld>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063421282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1256/smsqj.51208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064523617"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-04", 
    "datePublishedReg": "2007-04-01", 
    "description": "To enable downscaling of seasonal prediction and climate change scenarios, long-term baseline regional climatologies which employ global model forcing are needed for South America. As a first step in this process, this work examines climatological integrations with a regional climate model using a continental scale domain nested in both reanalysis data and multiple realizations of an atmospheric general circulation model (GCM). The analysis presents an evaluation of the nested model simulated large scale circulation, mean annual cycle and interannual variability which is compared against observational estimates and also with the driving GCM for the Northeast, Amazon, Monsoon and Southeast regions of South America. Results indicate that the regional climate model simulates the annual cycle of precipitation well in the Northeast region and Monsoon regions; it exhibits a dry bias during winter (July\u2013September) in the Southeast, and simulates a semi-annual cycle with a dry bias in summer (December\u2013February) in the Amazon region. There is little difference in the annual cycle between the GCM and renalyses driven simulations, however, substantial differences are seen in the interannual variability. Despite the biases in the annual cycle, the regional model captures much of the interannual variability observed in the Northeast, Southeast and Amazon regions. In the Monsoon region, where remote influences are weak, the regional model improves upon the GCM, though neither show substantial predictability. We conclude that in regions where remote influences are strong and the global model performs well it is difficult for the regional model to improve the large scale climatological features, indeed the regional model may degrade the simulation. Where remote forcing is weak and local processes dominate, there is some potential for the regional model to add value. This, however, will require improvments in physical parameterizations for high resolution tropical simulations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00382-006-0191-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4041568", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "RegCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fields", 
    "pagination": "461-480", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "03b0654bd213c3a5afa71d5f8c004618a8cece221e5c0550d3dbf8440f3b0ce9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-006-0191-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000774720"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-006-0191-z", 
      "https://app.dimensions.ai/details/publication/pub.1000774720"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13071_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00382-006-0191-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-006-0191-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-006-0191-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-006-0191-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-006-0191-z'


 

This table displays all metadata directly associated to this object as RDF triples.

272 TRIPLES      21 PREDICATES      82 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-006-0191-z schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author Nf59a424753864becb603d28894f4a325
4 schema:citation sg:pub.10.1007/978-1-935704-13-3_1
5 sg:pub.10.1007/s00382-003-0346-0
6 sg:pub.10.1007/s00382-004-0409-x
7 sg:pub.10.1007/s003820000085
8 sg:pub.10.1007/s00704-004-0045-8
9 sg:pub.10.1007/s00704-005-0202-8
10 sg:pub.10.1007/s00704-006-0206-z
11 sg:pub.10.1023/b:clim.0000013692.50640.55
12 https://doi.org/10.1002/qj.49710343505
13 https://doi.org/10.1002/qj.49711951209
14 https://doi.org/10.1016/0309-1708(94)90027-2
15 https://doi.org/10.1016/0921-8181(94)00020-e
16 https://doi.org/10.1016/s0921-8181(02)00207-2
17 https://doi.org/10.1029/2000jd000270
18 https://doi.org/10.1029/2000jd900415
19 https://doi.org/10.1029/2002eo000094
20 https://doi.org/10.1029/2003jd004495
21 https://doi.org/10.1029/2004gl019836
22 https://doi.org/10.1029/2004jd004721
23 https://doi.org/10.1029/2004jd005415
24 https://doi.org/10.1029/2005jd005980
25 https://doi.org/10.1029/94jd01720
26 https://doi.org/10.1126/science.1115898
27 https://doi.org/10.1175/1520-0442(1993)006<1825:lvnbld>2.0.co;2
28 https://doi.org/10.1175/1520-0442(1994)007<0375:rccsot>2.0.co;2
29 https://doi.org/10.1175/1520-0442(1996)009<0840:aogmpu>2.0.co;2
30 https://doi.org/10.1175/1520-0442(1998)011<1307:tlscot>2.0.co;2
31 https://doi.org/10.1175/1520-0442(1998)011<2628:iobaaf>2.0.co;2
32 https://doi.org/10.1175/1520-0442(1998)011<3204:vhrrcs>2.0.co;2
33 https://doi.org/10.1175/1520-0442(2001)014<2710:mmsote>2.0.co;2
34 https://doi.org/10.1175/1520-0442(2002)015<0745:votsac>2.0.co;2
35 https://doi.org/10.1175/1520-0442(2002)015<1609:aiisas>2.0.co;2
36 https://doi.org/10.1175/1520-0442(2002)015<2965:gcfias>2.0.co;2
37 https://doi.org/10.1175/1520-0442(2002)015<3123:tlscot>2.0.co;2
38 https://doi.org/10.1175/1520-0442(2003)016<0263:teniot>2.0.co;2
39 https://doi.org/10.1175/1520-0442(2003)016<2437:sasian>2.0.co;2
40 https://doi.org/10.1175/1520-0442(2003)016<2454:sasian>2.0.co;2
41 https://doi.org/10.1175/1520-0442(2004)017<0088:tsaczi>2.0.co;2
42 https://doi.org/10.1175/1520-0469(1974)031<0674:ioacce>2.0.co;2
43 https://doi.org/10.1175/1520-0469(1981)038<2653:otdodi>2.0.co;2
44 https://doi.org/10.1175/1520-0469(1991)048<2313:asfrcc>2.0.co;2
45 https://doi.org/10.1175/1520-0469(1999)056<1766:daeoac>2.0.co;2
46 https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2
47 https://doi.org/10.1175/1520-0477(2001)082<2787:ddoscp>2.3.co;2
48 https://doi.org/10.1175/1520-0493(1987)115<1606:garspp>2.0.co;2
49 https://doi.org/10.1175/1520-0493(1989)117<1779:acmfsf>2.0.co;2
50 https://doi.org/10.1175/1520-0493(1997)125<0279:awadco>2.0.co;2
51 https://doi.org/10.1175/1520-0493(2000)128<2947:iaivot>2.0.co;2
52 https://doi.org/10.1175/1520-0493(2000)128<3664:asntfd>2.0.co;2
53 https://doi.org/10.1175/1520-0493(2002)130<0684:cssswo>2.0.co;2
54 https://doi.org/10.1175/1520-0493(2004)132<0003:mftraw>2.0.co;2
55 https://doi.org/10.1175/jcli-3266.1
56 https://doi.org/10.1175/jcli3715.1
57 https://doi.org/10.1256/smsqj.51208
58 https://doi.org/10.2151/jmsj.82.1599
59 schema:datePublished 2007-04
60 schema:datePublishedReg 2007-04-01
61 schema:description To enable downscaling of seasonal prediction and climate change scenarios, long-term baseline regional climatologies which employ global model forcing are needed for South America. As a first step in this process, this work examines climatological integrations with a regional climate model using a continental scale domain nested in both reanalysis data and multiple realizations of an atmospheric general circulation model (GCM). The analysis presents an evaluation of the nested model simulated large scale circulation, mean annual cycle and interannual variability which is compared against observational estimates and also with the driving GCM for the Northeast, Amazon, Monsoon and Southeast regions of South America. Results indicate that the regional climate model simulates the annual cycle of precipitation well in the Northeast region and Monsoon regions; it exhibits a dry bias during winter (July–September) in the Southeast, and simulates a semi-annual cycle with a dry bias in summer (December–February) in the Amazon region. There is little difference in the annual cycle between the GCM and renalyses driven simulations, however, substantial differences are seen in the interannual variability. Despite the biases in the annual cycle, the regional model captures much of the interannual variability observed in the Northeast, Southeast and Amazon regions. In the Monsoon region, where remote influences are weak, the regional model improves upon the GCM, though neither show substantial predictability. We conclude that in regions where remote influences are strong and the global model performs well it is difficult for the regional model to improve the large scale climatological features, indeed the regional model may degrade the simulation. Where remote forcing is weak and local processes dominate, there is some potential for the regional model to add value. This, however, will require improvments in physical parameterizations for high resolution tropical simulations.
62 schema:genre research_article
63 schema:inLanguage en
64 schema:isAccessibleForFree false
65 schema:isPartOf N4fbcad1feda04a14b227bdac6c1a3ed4
66 N9e8cd598b58b482ba4dd532bbbe4b966
67 sg:journal.1049631
68 schema:name RegCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fields
69 schema:pagination 461-480
70 schema:productId N0f3d20a4ecd34eef872a2f879da67585
71 N56257a3b04a34722ac0c686218dff3c8
72 Neb2e9706fdab4e108aae0467998ecf5e
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000774720
74 https://doi.org/10.1007/s00382-006-0191-z
75 schema:sdDatePublished 2019-04-11T14:26
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N071c1d43f2964f63bcc7cd0289afb12e
78 schema:url http://link.springer.com/10.1007%2Fs00382-006-0191-z
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N071c1d43f2964f63bcc7cd0289afb12e schema:name Springer Nature - SN SciGraph project
83 rdf:type schema:Organization
84 N0f3d20a4ecd34eef872a2f879da67585 schema:name doi
85 schema:value 10.1007/s00382-006-0191-z
86 rdf:type schema:PropertyValue
87 N1c28b6da401f4dabb3ef1f0d55abb398 rdf:first sg:person.014760641236.18
88 rdf:rest N64a3220917ba4d87afbc418b7917b1d9
89 N4fbcad1feda04a14b227bdac6c1a3ed4 schema:volumeNumber 28
90 rdf:type schema:PublicationVolume
91 N56257a3b04a34722ac0c686218dff3c8 schema:name dimensions_id
92 schema:value pub.1000774720
93 rdf:type schema:PropertyValue
94 N64a3220917ba4d87afbc418b7917b1d9 rdf:first sg:person.014613765015.04
95 rdf:rest N89c2f1fda8fd4c45a4c4192049dafb31
96 N89c2f1fda8fd4c45a4c4192049dafb31 rdf:first sg:person.010366771647.37
97 rdf:rest rdf:nil
98 N9e8cd598b58b482ba4dd532bbbe4b966 schema:issueNumber 5
99 rdf:type schema:PublicationIssue
100 Naa1d4ee0c5df446ba0bc760c9a9c79b8 rdf:first sg:person.011273455713.53
101 rdf:rest N1c28b6da401f4dabb3ef1f0d55abb398
102 Neb2e9706fdab4e108aae0467998ecf5e schema:name readcube_id
103 schema:value 03b0654bd213c3a5afa71d5f8c004618a8cece221e5c0550d3dbf8440f3b0ce9
104 rdf:type schema:PropertyValue
105 Nf59a424753864becb603d28894f4a325 rdf:first sg:person.014214450302.44
106 rdf:rest Naa1d4ee0c5df446ba0bc760c9a9c79b8
107 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
108 schema:name Earth Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
111 schema:name Atmospheric Sciences
112 rdf:type schema:DefinedTerm
113 sg:grant.4041568 http://pending.schema.org/fundedItem sg:pub.10.1007/s00382-006-0191-z
114 rdf:type schema:MonetaryGrant
115 sg:journal.1049631 schema:issn 0930-7575
116 1432-0894
117 schema:name Climate Dynamics
118 rdf:type schema:Periodical
119 sg:person.010366771647.37 schema:affiliation https://www.grid.ac/institutes/grid.419330.c
120 schema:familyName Pal
121 schema:givenName J. S.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010366771647.37
123 rdf:type schema:Person
124 sg:person.011273455713.53 schema:affiliation https://www.grid.ac/institutes/grid.419330.c
125 schema:familyName Rauscher
126 schema:givenName Sara A.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011273455713.53
128 rdf:type schema:Person
129 sg:person.014214450302.44 schema:affiliation https://www.grid.ac/institutes/grid.63054.34
130 schema:familyName Seth
131 schema:givenName Anji
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014214450302.44
133 rdf:type schema:Person
134 sg:person.014613765015.04 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
135 schema:familyName Qian
136 schema:givenName Jian-Hua
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014613765015.04
138 rdf:type schema:Person
139 sg:person.014760641236.18 schema:affiliation https://www.grid.ac/institutes/grid.21729.3f
140 schema:familyName Camargo
141 schema:givenName Suzana J.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014760641236.18
143 rdf:type schema:Person
144 sg:pub.10.1007/978-1-935704-13-3_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001583813
145 https://doi.org/10.1007/978-1-935704-13-3_1
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s00382-003-0346-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030685409
148 https://doi.org/10.1007/s00382-003-0346-0
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s00382-004-0409-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045517326
151 https://doi.org/10.1007/s00382-004-0409-x
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s003820000085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039433364
154 https://doi.org/10.1007/s003820000085
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s00704-004-0045-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006772618
157 https://doi.org/10.1007/s00704-004-0045-8
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s00704-005-0202-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001001231
160 https://doi.org/10.1007/s00704-005-0202-8
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s00704-006-0206-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1031028695
163 https://doi.org/10.1007/s00704-006-0206-z
164 rdf:type schema:CreativeWork
165 sg:pub.10.1023/b:clim.0000013692.50640.55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029484467
166 https://doi.org/10.1023/b:clim.0000013692.50640.55
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/qj.49710343505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035524796
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/qj.49711951209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010516094
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/0309-1708(94)90027-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030265189
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/0921-8181(94)00020-e schema:sameAs https://app.dimensions.ai/details/publication/pub.1021890669
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s0921-8181(02)00207-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050430099
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1029/2000jd000270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043480169
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1029/2000jd900415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004042180
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1029/2002eo000094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012926577
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1029/2003jd004495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029473590
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1029/2004gl019836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026914505
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1029/2004jd004721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045025477
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1029/2004jd005415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038509406
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1029/2005jd005980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023488128
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1029/94jd01720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003003709
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1126/science.1115898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452483
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1175/1520-0442(1993)006<1825:lvnbld>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063421282
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1175/1520-0442(1994)007<0375:rccsot>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032262149
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1175/1520-0442(1996)009<0840:aogmpu>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020348944
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1175/1520-0442(1998)011<1307:tlscot>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004301855
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1175/1520-0442(1998)011<2628:iobaaf>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037136199
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1175/1520-0442(1998)011<3204:vhrrcs>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009846552
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1175/1520-0442(2001)014<2710:mmsote>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016484879
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1175/1520-0442(2002)015<0745:votsac>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022679507
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1175/1520-0442(2002)015<1609:aiisas>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025644996
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1175/1520-0442(2002)015<2965:gcfias>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033336233
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1175/1520-0442(2002)015<3123:tlscot>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041828858
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1175/1520-0442(2003)016<0263:teniot>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018358439
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1175/1520-0442(2003)016<2437:sasian>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009102838
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1175/1520-0442(2003)016<2454:sasian>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015926930
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1175/1520-0442(2004)017<0088:tsaczi>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047365283
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1175/1520-0469(1974)031<0674:ioacce>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021101908
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1175/1520-0469(1981)038<2653:otdodi>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017328267
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1175/1520-0469(1991)048<2313:asfrcc>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047848473
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1175/1520-0469(1999)056<1766:daeoac>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012490332
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011849757
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1175/1520-0477(2001)082<2787:ddoscp>2.3.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015287900
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1175/1520-0493(1987)115<1606:garspp>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031933756
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1175/1520-0493(1989)117<1779:acmfsf>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020057497
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1175/1520-0493(1997)125<0279:awadco>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028372007
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1175/1520-0493(2000)128<2947:iaivot>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010958640
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1175/1520-0493(2000)128<3664:asntfd>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041635431
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1175/1520-0493(2002)130<0684:cssswo>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005888604
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1175/1520-0493(2004)132<0003:mftraw>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027844408
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1175/jcli-3266.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042866161
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1175/jcli3715.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048459474
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1256/smsqj.51208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064523617
259 rdf:type schema:CreativeWork
260 https://doi.org/10.2151/jmsj.82.1599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030947595
261 rdf:type schema:CreativeWork
262 https://www.grid.ac/institutes/grid.21729.3f schema:alternateName Columbia University
263 schema:name International Research Institute for Climate Prediction, Columbia University, 61 Route 9W, Monell Building, 10964, Palisades, NY, USA
264 rdf:type schema:Organization
265 https://www.grid.ac/institutes/grid.419330.c schema:alternateName International Centre for Theoretical Physics
266 schema:name Earth Systems Physics, International Center for Theoretical Physics, Trieste, Italy
267 International Research Institute for Climate Prediction, Columbia University, 61 Route 9W, Monell Building, 10964, Palisades, NY, USA
268 rdf:type schema:Organization
269 https://www.grid.ac/institutes/grid.63054.34 schema:alternateName University of Connecticut
270 schema:name Department of Geography, University of Connecticut, Storrs, CT, USA
271 International Research Institute for Climate Prediction, Columbia University, 61 Route 9W, Monell Building, 10964, Palisades, NY, USA
272 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...