On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-02-04

AUTHORS

M. J. Webb, C. A. Senior, D. M. H. Sexton, W. J. Ingram, K. D. Williams, M. A. Ringer, B. J. McAvaney, R. Colman, B. J. Soden, R. Gudgel, T. Knutson, S. Emori, T. Ogura, Y. Tsushima, N. Andronova, B. Li, I. Musat, S. Bony, K. E. Taylor

ABSTRACT

Global and local feedback analysis techniques have been applied to two ensembles of mixed layer equilibrium CO2 doubling climate change experiments, from the CFMIP (Cloud Feedback Model Intercomparison Project) and QUMP (Quantifying Uncertainty in Model Predictions) projects. Neither of these new ensembles shows evidence of a statistically significant change in the ensemble mean or variance in global mean climate sensitivity when compared with the results from the mixed layer models quoted in the Third Assessment Report of the IPCC. Global mean feedback analysis of these two ensembles confirms the large contribution made by inter-model differences in cloud feedbacks to those in climate sensitivity in earlier studies; net cloud feedbacks are responsible for 66% of the inter-model variance in the total feedback in the CFMIP ensemble and 85% in the QUMP ensemble. The ensemble mean global feedback components are all statistically indistinguishable between the two ensembles, except for the clear-sky shortwave feedback which is stronger in the CFMIP ensemble. While ensemble variances of the shortwave cloud feedback and both clear-sky feedback terms are larger in CFMIP, there is considerable overlap in the cloud feedback ranges; QUMP spans 80% or more of the CFMIP ranges in longwave and shortwave cloud feedback. We introduce a local cloud feedback classification system which distinguishes different types of cloud feedbacks on the basis of the relative strengths of their longwave and shortwave components, and interpret these in terms of responses of different cloud types diagnosed by the International Satellite Cloud Climatology Project simulator. In the CFMIP ensemble, areas where low-top cloud changes constitute the largest cloud response are responsible for 59% of the contribution from cloud feedback to the variance in the total feedback. A similar figure is found for the QUMP ensemble. Areas of positive low cloud feedback (associated with reductions in low level cloud amount) contribute most to this figure in the CFMIP ensemble, while areas of negative cloud feedback (associated with increases in low level cloud amount and optical thickness) contribute most in QUMP. Classes associated with high-top cloud feedbacks are responsible for 33 and 20% of the cloud feedback contribution in CFMIP and QUMP, respectively, while classes where no particular cloud type stands out are responsible for 8 and 21%. More... »

PAGES

17-38

References to SciGraph publications

  • 1991-03. Sensitivity of an atmospheric general circulation model to prescribed SST changes: feedback effects associated with the simulation of cloud optical properties in CLIMATE DYNAMICS
  • 2004-08. Quantification of modelling uncertainties in a large ensemble of climate change simulations in NATURE
  • 2001-08. The response of the climate system to the indirect effects of anthropogenic sulfate aerosol in CLIMATE DYNAMICS
  • 2004-01-27. On dynamic and thermodynamic components of cloud changes in CLIMATE DYNAMICS
  • 2001-11. Climate feedbacks in a general circulation model incorporating prognostic clouds in CLIMATE DYNAMICS
  • 2003-03-20. A comparison of climate feedbacks in general circulation models in CLIMATE DYNAMICS
  • 2003-02. Climate sensitivity and response in CLIMATE DYNAMICS
  • 2000-02. The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3 in CLIMATE DYNAMICS
  • 2006-08-08. The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection in CLIMATE DYNAMICS
  • 2003-03-04. A comparison of climate response to different radiative forcings in three general circulation models: towards an improved metric of climate change in CLIMATE DYNAMICS
  • 2005-01. Uncertainty in predictions of the climate response to rising levels of greenhouse gases in NATURE
  • 2003-03-04. Evaluating the cloud response to climate change and current climate variability in CLIMATE DYNAMICS
  • 2005-12-20. Evaluation of a component of the cloud response to climate change in an intercomparison of climate models in CLIMATE DYNAMICS
  • 1996-05. A methodology study of the validation of clouds in GCMs using ISCCP satellite observations in CLIMATE DYNAMICS
  • 2005-03-09. Towards evaluating cloud response to climate change using clustering technique identification of cloud regimes in CLIMATE DYNAMICS
  • 2001-09. Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models in CLIMATE DYNAMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00382-006-0111-2

    DOI

    http://dx.doi.org/10.1007/s00382-006-0111-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021690503


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atmospheric Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Webb", 
            "givenName": "M. J.", 
            "id": "sg:person.010673066557.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010673066557.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Senior", 
            "givenName": "C. A.", 
            "id": "sg:person.012173370255.92", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012173370255.92"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sexton", 
            "givenName": "D. M. H.", 
            "id": "sg:person.014153746435.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014153746435.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ingram", 
            "givenName": "W. J.", 
            "id": "sg:person.014131530715.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014131530715.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Williams", 
            "givenName": "K. D.", 
            "id": "sg:person.014171235367.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014171235367.23"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK", 
              "id": "http://www.grid.ac/institutes/grid.17100.37", 
              "name": [
                "Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ringer", 
            "givenName": "M. A.", 
            "id": "sg:person.011206742225.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011206742225.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bureau of Meteorology Research Centre (BMRC), Melbourne, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1527.1", 
              "name": [
                "Bureau of Meteorology Research Centre (BMRC), Melbourne, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McAvaney", 
            "givenName": "B. J.", 
            "id": "sg:person.012760473521.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012760473521.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Bureau of Meteorology Research Centre (BMRC), Melbourne, Australia", 
              "id": "http://www.grid.ac/institutes/grid.1527.1", 
              "name": [
                "Bureau of Meteorology Research Centre (BMRC), Melbourne, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Colman", 
            "givenName": "R.", 
            "id": "sg:person.07430431016.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07430431016.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Rosenstiel School for Marine and Atmospheric Science, University of Miami, Miami, FL, USA", 
              "id": "http://www.grid.ac/institutes/grid.26790.3a", 
              "name": [
                "Rosenstiel School for Marine and Atmospheric Science, University of Miami, Miami, FL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Soden", 
            "givenName": "B. J.", 
            "id": "sg:person.011455200011.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011455200011.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Geophysical Fluid Dynamics Laboratory (GFDL), Princeton, NJ, USA", 
              "id": "http://www.grid.ac/institutes/grid.482795.5", 
              "name": [
                "Geophysical Fluid Dynamics Laboratory (GFDL), Princeton, NJ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gudgel", 
            "givenName": "R.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Geophysical Fluid Dynamics Laboratory (GFDL), Princeton, NJ, USA", 
              "id": "http://www.grid.ac/institutes/grid.482795.5", 
              "name": [
                "Geophysical Fluid Dynamics Laboratory (GFDL), Princeton, NJ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Knutson", 
            "givenName": "T.", 
            "id": "sg:person.012007322515.88", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012007322515.88"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute for Environmental Studies (NIES), Tsukuba, Japan", 
              "id": "http://www.grid.ac/institutes/grid.140139.e", 
              "name": [
                "National Institute for Environmental Studies (NIES), Tsukuba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Emori", 
            "givenName": "S.", 
            "id": "sg:person.016137466477.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137466477.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute for Environmental Studies (NIES), Tsukuba, Japan", 
              "id": "http://www.grid.ac/institutes/grid.140139.e", 
              "name": [
                "National Institute for Environmental Studies (NIES), Tsukuba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ogura", 
            "givenName": "T.", 
            "id": "sg:person.010065645611.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010065645611.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Frontier Research Center for Global Change (FRCGC), Japan Agency for Marine\u2013Earth Science and Technology, Kanagawa, Japan", 
              "id": "http://www.grid.ac/institutes/grid.410588.0", 
              "name": [
                "Frontier Research Center for Global Change (FRCGC), Japan Agency for Marine\u2013Earth Science and Technology, Kanagawa, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tsushima", 
            "givenName": "Y.", 
            "id": "sg:person.012013445227.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012013445227.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI, USA", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Andronova", 
            "givenName": "N.", 
            "id": "sg:person.014372533443.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014372533443.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Atmospheric Sciences, University of Illinois at Urbana\u2013Champaign (UIUC), Urbana, IL, USA", 
              "id": "http://www.grid.ac/institutes/grid.35403.31", 
              "name": [
                "Department of Atmospheric Sciences, University of Illinois at Urbana\u2013Champaign (UIUC), Urbana, IL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "B.", 
            "id": "sg:person.012365737173.79", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012365737173.79"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut Pierre Simon Laplace (IPSL), Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.423115.0", 
              "name": [
                "Institut Pierre Simon Laplace (IPSL), Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Musat", 
            "givenName": "I.", 
            "id": "sg:person.013024470237.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013024470237.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut Pierre Simon Laplace (IPSL), Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.423115.0", 
              "name": [
                "Institut Pierre Simon Laplace (IPSL), Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bony", 
            "givenName": "S.", 
            "id": "sg:person.013647160343.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Program for Climate Model Diagnosis and Intercomparison (PCMDI), Livermore, CA, USA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Program for Climate Model Diagnosis and Intercomparison (PCMDI), Livermore, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Taylor", 
            "givenName": "K. E.", 
            "id": "sg:person.01041300062.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041300062.84"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00382-006-0158-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016287495", 
              "https://doi.org/10.1007/s00382-006-0158-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00211685", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048432189", 
              "https://doi.org/10.1007/bf00211685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-002-0283-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085172498", 
              "https://doi.org/10.1007/s00382-002-0283-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02771", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036499414", 
              "https://doi.org/10.1038/nature02771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820100157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036889233", 
              "https://doi.org/10.1007/s003820100157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-003-0310-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084987147", 
              "https://doi.org/10.1007/s00382-003-0310-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00251808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042853097", 
              "https://doi.org/10.1007/bf00251808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-002-0303-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086158322", 
              "https://doi.org/10.1007/s00382-002-0303-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820100162", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011851178", 
              "https://doi.org/10.1007/s003820100162"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-004-0512-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050078444", 
              "https://doi.org/10.1007/s00382-004-0512-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-005-0067-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014995788", 
              "https://doi.org/10.1007/s00382-005-0067-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-003-0305-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086328168", 
              "https://doi.org/10.1007/s00382-003-0305-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820050009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002170907", 
              "https://doi.org/10.1007/s003820050009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030001284", 
              "https://doi.org/10.1038/nature03301"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00382-003-0369-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014795140", 
              "https://doi.org/10.1007/s00382-003-0369-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s003820100150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035461329", 
              "https://doi.org/10.1007/s003820100150"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-02-04", 
        "datePublishedReg": "2006-02-04", 
        "description": "Global and local feedback analysis techniques have been applied to two ensembles of mixed layer equilibrium CO2 doubling climate change experiments, from the CFMIP (Cloud Feedback Model Intercomparison Project) and QUMP (Quantifying Uncertainty in Model Predictions) projects. Neither of these new ensembles shows evidence of a statistically significant change in the ensemble mean or variance in global mean climate sensitivity when compared with the results from the mixed layer models quoted in the Third Assessment Report of the IPCC. Global mean feedback analysis of these two ensembles confirms the large contribution made by inter-model differences in cloud feedbacks to those in climate sensitivity in earlier studies; net cloud feedbacks are responsible for 66% of the inter-model variance in the total feedback in the CFMIP ensemble and 85% in the QUMP ensemble. The ensemble mean global feedback components are all statistically indistinguishable between the two ensembles, except for the clear-sky shortwave feedback which is stronger in the CFMIP ensemble. While ensemble variances of the shortwave cloud feedback and both clear-sky feedback terms are larger in CFMIP, there is considerable overlap in the cloud feedback ranges; QUMP spans 80% or more of the CFMIP ranges in longwave and shortwave cloud feedback. We introduce a local cloud feedback classification system which distinguishes different types of cloud feedbacks on the basis of the relative strengths of their longwave and shortwave components, and interpret these in terms of responses of different cloud types diagnosed by the International Satellite Cloud Climatology Project simulator. In the CFMIP ensemble, areas where low-top cloud changes constitute the largest cloud response are responsible for 59% of the contribution from cloud feedback to the variance in the total feedback. A similar figure is found for the QUMP ensemble. Areas of positive low cloud feedback (associated with reductions in low level cloud amount) contribute most to this figure in the CFMIP ensemble, while areas of negative cloud feedback (associated with increases in low level cloud amount and optical thickness) contribute most in QUMP. Classes associated with high-top cloud feedbacks are responsible for 33 and 20% of the cloud feedback contribution in CFMIP and QUMP, respectively, while classes where no particular cloud type stands out are responsible for 8 and 21%.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00382-006-0111-2", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1049631", 
            "issn": [
              "0930-7575", 
              "1432-0894"
            ], 
            "name": "Climate Dynamics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "27"
          }
        ], 
        "keywords": [
          "cloud feedback", 
          "climate sensitivity", 
          "cloud types", 
          "total feedback", 
          "positive low-cloud feedback", 
          "net cloud feedback", 
          "shortwave cloud feedback", 
          "low-cloud feedback", 
          "negative cloud feedback", 
          "inter-model differences", 
          "inter-model variance", 
          "mixed layer model", 
          "climate change experiments", 
          "different cloud types", 
          "Third Assessment Report", 
          "particular cloud types", 
          "shortwave feedback", 
          "cloud response", 
          "GCM ensemble", 
          "cloud changes", 
          "ensemble mean", 
          "shortwave component", 
          "Assessment Report", 
          "change experiments", 
          "CFMIP", 
          "ensemble variance", 
          "feedback contribution", 
          "layer model", 
          "feedback analysis", 
          "local feedback mechanism", 
          "equilibrium CO2", 
          "large contribution", 
          "new ensemble", 
          "ensemble", 
          "feedback mechanism", 
          "project simulator", 
          "area", 
          "IPCC", 
          "feedback component", 
          "feedback", 
          "contribution", 
          "CO2", 
          "earlier studies", 
          "relative strength", 
          "feedback term", 
          "changes", 
          "significant changes", 
          "range", 
          "variance", 
          "analysis techniques", 
          "components", 
          "types", 
          "model", 
          "evidence", 
          "different types", 
          "sensitivity", 
          "project", 
          "response", 
          "terms", 
          "analysis", 
          "similar figures", 
          "considerable overlap", 
          "basis", 
          "classification system", 
          "experiments", 
          "results", 
          "system", 
          "differences", 
          "terms of response", 
          "study", 
          "means", 
          "overlap", 
          "strength", 
          "simulator", 
          "mechanism", 
          "technique", 
          "figures", 
          "class", 
          "report"
        ], 
        "name": "On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles", 
        "pagination": "17-38", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021690503"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00382-006-0111-2"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00382-006-0111-2", 
          "https://app.dimensions.ai/details/publication/pub.1021690503"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T16:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_430.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00382-006-0111-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-006-0111-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-006-0111-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-006-0111-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-006-0111-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    352 TRIPLES      21 PREDICATES      119 URIs      95 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00382-006-0111-2 schema:about anzsrc-for:04
    2 anzsrc-for:0401
    3 schema:author N540735c892b24605b81218c6539c7bba
    4 schema:citation sg:pub.10.1007/bf00211685
    5 sg:pub.10.1007/bf00251808
    6 sg:pub.10.1007/s00382-002-0283-3
    7 sg:pub.10.1007/s00382-002-0303-3
    8 sg:pub.10.1007/s00382-003-0305-9
    9 sg:pub.10.1007/s00382-003-0310-z
    10 sg:pub.10.1007/s00382-003-0369-6
    11 sg:pub.10.1007/s00382-004-0512-z
    12 sg:pub.10.1007/s00382-005-0067-7
    13 sg:pub.10.1007/s00382-006-0158-0
    14 sg:pub.10.1007/s003820050009
    15 sg:pub.10.1007/s003820100150
    16 sg:pub.10.1007/s003820100157
    17 sg:pub.10.1007/s003820100162
    18 sg:pub.10.1038/nature02771
    19 sg:pub.10.1038/nature03301
    20 schema:datePublished 2006-02-04
    21 schema:datePublishedReg 2006-02-04
    22 schema:description Global and local feedback analysis techniques have been applied to two ensembles of mixed layer equilibrium CO2 doubling climate change experiments, from the CFMIP (Cloud Feedback Model Intercomparison Project) and QUMP (Quantifying Uncertainty in Model Predictions) projects. Neither of these new ensembles shows evidence of a statistically significant change in the ensemble mean or variance in global mean climate sensitivity when compared with the results from the mixed layer models quoted in the Third Assessment Report of the IPCC. Global mean feedback analysis of these two ensembles confirms the large contribution made by inter-model differences in cloud feedbacks to those in climate sensitivity in earlier studies; net cloud feedbacks are responsible for 66% of the inter-model variance in the total feedback in the CFMIP ensemble and 85% in the QUMP ensemble. The ensemble mean global feedback components are all statistically indistinguishable between the two ensembles, except for the clear-sky shortwave feedback which is stronger in the CFMIP ensemble. While ensemble variances of the shortwave cloud feedback and both clear-sky feedback terms are larger in CFMIP, there is considerable overlap in the cloud feedback ranges; QUMP spans 80% or more of the CFMIP ranges in longwave and shortwave cloud feedback. We introduce a local cloud feedback classification system which distinguishes different types of cloud feedbacks on the basis of the relative strengths of their longwave and shortwave components, and interpret these in terms of responses of different cloud types diagnosed by the International Satellite Cloud Climatology Project simulator. In the CFMIP ensemble, areas where low-top cloud changes constitute the largest cloud response are responsible for 59% of the contribution from cloud feedback to the variance in the total feedback. A similar figure is found for the QUMP ensemble. Areas of positive low cloud feedback (associated with reductions in low level cloud amount) contribute most to this figure in the CFMIP ensemble, while areas of negative cloud feedback (associated with increases in low level cloud amount and optical thickness) contribute most in QUMP. Classes associated with high-top cloud feedbacks are responsible for 33 and 20% of the cloud feedback contribution in CFMIP and QUMP, respectively, while classes where no particular cloud type stands out are responsible for 8 and 21%.
    23 schema:genre article
    24 schema:isAccessibleForFree true
    25 schema:isPartOf N1b6c227e1d96438dbd41a450c905d502
    26 N577355213abd47d886391cbded41230e
    27 sg:journal.1049631
    28 schema:keywords Assessment Report
    29 CFMIP
    30 CO2
    31 GCM ensemble
    32 IPCC
    33 Third Assessment Report
    34 analysis
    35 analysis techniques
    36 area
    37 basis
    38 change experiments
    39 changes
    40 class
    41 classification system
    42 climate change experiments
    43 climate sensitivity
    44 cloud changes
    45 cloud feedback
    46 cloud response
    47 cloud types
    48 components
    49 considerable overlap
    50 contribution
    51 differences
    52 different cloud types
    53 different types
    54 earlier studies
    55 ensemble
    56 ensemble mean
    57 ensemble variance
    58 equilibrium CO2
    59 evidence
    60 experiments
    61 feedback
    62 feedback analysis
    63 feedback component
    64 feedback contribution
    65 feedback mechanism
    66 feedback term
    67 figures
    68 inter-model differences
    69 inter-model variance
    70 large contribution
    71 layer model
    72 local feedback mechanism
    73 low-cloud feedback
    74 means
    75 mechanism
    76 mixed layer model
    77 model
    78 negative cloud feedback
    79 net cloud feedback
    80 new ensemble
    81 overlap
    82 particular cloud types
    83 positive low-cloud feedback
    84 project
    85 project simulator
    86 range
    87 relative strength
    88 report
    89 response
    90 results
    91 sensitivity
    92 shortwave cloud feedback
    93 shortwave component
    94 shortwave feedback
    95 significant changes
    96 similar figures
    97 simulator
    98 strength
    99 study
    100 system
    101 technique
    102 terms
    103 terms of response
    104 total feedback
    105 types
    106 variance
    107 schema:name On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles
    108 schema:pagination 17-38
    109 schema:productId N11cf7b9b0f7446008d5757efd3cc8b4e
    110 Nca169d83f081437a808e3387ae46f21e
    111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021690503
    112 https://doi.org/10.1007/s00382-006-0111-2
    113 schema:sdDatePublished 2022-08-04T16:56
    114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    115 schema:sdPublisher N0fc53fffcabe4da09b616e616668904d
    116 schema:url https://doi.org/10.1007/s00382-006-0111-2
    117 sgo:license sg:explorer/license/
    118 sgo:sdDataset articles
    119 rdf:type schema:ScholarlyArticle
    120 N0fc53fffcabe4da09b616e616668904d schema:name Springer Nature - SN SciGraph project
    121 rdf:type schema:Organization
    122 N11cf7b9b0f7446008d5757efd3cc8b4e schema:name doi
    123 schema:value 10.1007/s00382-006-0111-2
    124 rdf:type schema:PropertyValue
    125 N1b6c227e1d96438dbd41a450c905d502 schema:volumeNumber 27
    126 rdf:type schema:PublicationVolume
    127 N2141a4c6f85e4c8ab762a9fb26adde39 rdf:first sg:person.014372533443.13
    128 rdf:rest N2503d9b8b6584f65b34b3ed12a6407fd
    129 N2503d9b8b6584f65b34b3ed12a6407fd rdf:first sg:person.012365737173.79
    130 rdf:rest N3b5001fde6984ab5a36f549b8346a3e3
    131 N2b80f420950d4ff29a0c0d253a3b3760 rdf:first sg:person.014153746435.96
    132 rdf:rest N9a6250f491a64db39c45f3af91973949
    133 N325e9d77d733450e88369f55cd7a68fa rdf:first sg:person.07430431016.48
    134 rdf:rest Ne59aa6c884174919b92e349ae4a809b1
    135 N33a43a7080134789bf1a4b6590b06093 rdf:first sg:person.013647160343.22
    136 rdf:rest Nc597943800b84eeca537a440f1f56915
    137 N3b5001fde6984ab5a36f549b8346a3e3 rdf:first sg:person.013024470237.39
    138 rdf:rest N33a43a7080134789bf1a4b6590b06093
    139 N4e59be582a904871b563f4765d18241e rdf:first sg:person.014171235367.23
    140 rdf:rest Nb2d72531f31e4eacafe737ae8218e309
    141 N52de9aed409a4a9a89fc434eedb3ba42 rdf:first sg:person.010065645611.09
    142 rdf:rest Ndf409439c5d34848bdbaa5b86ed51f3c
    143 N540735c892b24605b81218c6539c7bba rdf:first sg:person.010673066557.41
    144 rdf:rest Nbf9e13ca6e944b40b606889905f43caa
    145 N577355213abd47d886391cbded41230e schema:issueNumber 1
    146 rdf:type schema:PublicationIssue
    147 N87dd1d1f829e4cb58eba682fb4fa9dfb rdf:first Ne526c67c96bb4965bf4ef84c514be6ee
    148 rdf:rest Nf8dd514337344d6e80ebe4ca5671799f
    149 N9a6250f491a64db39c45f3af91973949 rdf:first sg:person.014131530715.33
    150 rdf:rest N4e59be582a904871b563f4765d18241e
    151 Na30e73b5dd7f4633843ad0106c541ee1 rdf:first sg:person.012760473521.51
    152 rdf:rest N325e9d77d733450e88369f55cd7a68fa
    153 Nb2d72531f31e4eacafe737ae8218e309 rdf:first sg:person.011206742225.33
    154 rdf:rest Na30e73b5dd7f4633843ad0106c541ee1
    155 Nbf9e13ca6e944b40b606889905f43caa rdf:first sg:person.012173370255.92
    156 rdf:rest N2b80f420950d4ff29a0c0d253a3b3760
    157 Nc597943800b84eeca537a440f1f56915 rdf:first sg:person.01041300062.84
    158 rdf:rest rdf:nil
    159 Nca169d83f081437a808e3387ae46f21e schema:name dimensions_id
    160 schema:value pub.1021690503
    161 rdf:type schema:PropertyValue
    162 Ndf409439c5d34848bdbaa5b86ed51f3c rdf:first sg:person.012013445227.51
    163 rdf:rest N2141a4c6f85e4c8ab762a9fb26adde39
    164 Ne526c67c96bb4965bf4ef84c514be6ee schema:affiliation grid-institutes:grid.482795.5
    165 schema:familyName Gudgel
    166 schema:givenName R.
    167 rdf:type schema:Person
    168 Ne59aa6c884174919b92e349ae4a809b1 rdf:first sg:person.011455200011.84
    169 rdf:rest N87dd1d1f829e4cb58eba682fb4fa9dfb
    170 Neec615ce24f54e06a402022b5404e636 rdf:first sg:person.016137466477.58
    171 rdf:rest N52de9aed409a4a9a89fc434eedb3ba42
    172 Nf8dd514337344d6e80ebe4ca5671799f rdf:first sg:person.012007322515.88
    173 rdf:rest Neec615ce24f54e06a402022b5404e636
    174 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    175 schema:name Earth Sciences
    176 rdf:type schema:DefinedTerm
    177 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
    178 schema:name Atmospheric Sciences
    179 rdf:type schema:DefinedTerm
    180 sg:journal.1049631 schema:issn 0930-7575
    181 1432-0894
    182 schema:name Climate Dynamics
    183 schema:publisher Springer Nature
    184 rdf:type schema:Periodical
    185 sg:person.010065645611.09 schema:affiliation grid-institutes:grid.140139.e
    186 schema:familyName Ogura
    187 schema:givenName T.
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010065645611.09
    189 rdf:type schema:Person
    190 sg:person.01041300062.84 schema:affiliation grid-institutes:None
    191 schema:familyName Taylor
    192 schema:givenName K. E.
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041300062.84
    194 rdf:type schema:Person
    195 sg:person.010673066557.41 schema:affiliation grid-institutes:grid.17100.37
    196 schema:familyName Webb
    197 schema:givenName M. J.
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010673066557.41
    199 rdf:type schema:Person
    200 sg:person.011206742225.33 schema:affiliation grid-institutes:grid.17100.37
    201 schema:familyName Ringer
    202 schema:givenName M. A.
    203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011206742225.33
    204 rdf:type schema:Person
    205 sg:person.011455200011.84 schema:affiliation grid-institutes:grid.26790.3a
    206 schema:familyName Soden
    207 schema:givenName B. J.
    208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011455200011.84
    209 rdf:type schema:Person
    210 sg:person.012007322515.88 schema:affiliation grid-institutes:grid.482795.5
    211 schema:familyName Knutson
    212 schema:givenName T.
    213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012007322515.88
    214 rdf:type schema:Person
    215 sg:person.012013445227.51 schema:affiliation grid-institutes:grid.410588.0
    216 schema:familyName Tsushima
    217 schema:givenName Y.
    218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012013445227.51
    219 rdf:type schema:Person
    220 sg:person.012173370255.92 schema:affiliation grid-institutes:grid.17100.37
    221 schema:familyName Senior
    222 schema:givenName C. A.
    223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012173370255.92
    224 rdf:type schema:Person
    225 sg:person.012365737173.79 schema:affiliation grid-institutes:grid.35403.31
    226 schema:familyName Li
    227 schema:givenName B.
    228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012365737173.79
    229 rdf:type schema:Person
    230 sg:person.012760473521.51 schema:affiliation grid-institutes:grid.1527.1
    231 schema:familyName McAvaney
    232 schema:givenName B. J.
    233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012760473521.51
    234 rdf:type schema:Person
    235 sg:person.013024470237.39 schema:affiliation grid-institutes:grid.423115.0
    236 schema:familyName Musat
    237 schema:givenName I.
    238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013024470237.39
    239 rdf:type schema:Person
    240 sg:person.013647160343.22 schema:affiliation grid-institutes:grid.423115.0
    241 schema:familyName Bony
    242 schema:givenName S.
    243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22
    244 rdf:type schema:Person
    245 sg:person.014131530715.33 schema:affiliation grid-institutes:grid.17100.37
    246 schema:familyName Ingram
    247 schema:givenName W. J.
    248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014131530715.33
    249 rdf:type schema:Person
    250 sg:person.014153746435.96 schema:affiliation grid-institutes:grid.17100.37
    251 schema:familyName Sexton
    252 schema:givenName D. M. H.
    253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014153746435.96
    254 rdf:type schema:Person
    255 sg:person.014171235367.23 schema:affiliation grid-institutes:grid.17100.37
    256 schema:familyName Williams
    257 schema:givenName K. D.
    258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014171235367.23
    259 rdf:type schema:Person
    260 sg:person.014372533443.13 schema:affiliation grid-institutes:grid.214458.e
    261 schema:familyName Andronova
    262 schema:givenName N.
    263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014372533443.13
    264 rdf:type schema:Person
    265 sg:person.016137466477.58 schema:affiliation grid-institutes:grid.140139.e
    266 schema:familyName Emori
    267 schema:givenName S.
    268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137466477.58
    269 rdf:type schema:Person
    270 sg:person.07430431016.48 schema:affiliation grid-institutes:grid.1527.1
    271 schema:familyName Colman
    272 schema:givenName R.
    273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07430431016.48
    274 rdf:type schema:Person
    275 sg:pub.10.1007/bf00211685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048432189
    276 https://doi.org/10.1007/bf00211685
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1007/bf00251808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042853097
    279 https://doi.org/10.1007/bf00251808
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1007/s00382-002-0283-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085172498
    282 https://doi.org/10.1007/s00382-002-0283-3
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1007/s00382-002-0303-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086158322
    285 https://doi.org/10.1007/s00382-002-0303-3
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1007/s00382-003-0305-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086328168
    288 https://doi.org/10.1007/s00382-003-0305-9
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1007/s00382-003-0310-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1084987147
    291 https://doi.org/10.1007/s00382-003-0310-z
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1007/s00382-003-0369-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014795140
    294 https://doi.org/10.1007/s00382-003-0369-6
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1007/s00382-004-0512-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1050078444
    297 https://doi.org/10.1007/s00382-004-0512-z
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1007/s00382-005-0067-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014995788
    300 https://doi.org/10.1007/s00382-005-0067-7
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1007/s00382-006-0158-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016287495
    303 https://doi.org/10.1007/s00382-006-0158-0
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1007/s003820050009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002170907
    306 https://doi.org/10.1007/s003820050009
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1007/s003820100150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035461329
    309 https://doi.org/10.1007/s003820100150
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1007/s003820100157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036889233
    312 https://doi.org/10.1007/s003820100157
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1007/s003820100162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011851178
    315 https://doi.org/10.1007/s003820100162
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1038/nature02771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036499414
    318 https://doi.org/10.1038/nature02771
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1038/nature03301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030001284
    321 https://doi.org/10.1038/nature03301
    322 rdf:type schema:CreativeWork
    323 grid-institutes:None schema:alternateName Program for Climate Model Diagnosis and Intercomparison (PCMDI), Livermore, CA, USA
    324 schema:name Program for Climate Model Diagnosis and Intercomparison (PCMDI), Livermore, CA, USA
    325 rdf:type schema:Organization
    326 grid-institutes:grid.140139.e schema:alternateName National Institute for Environmental Studies (NIES), Tsukuba, Japan
    327 schema:name National Institute for Environmental Studies (NIES), Tsukuba, Japan
    328 rdf:type schema:Organization
    329 grid-institutes:grid.1527.1 schema:alternateName Bureau of Meteorology Research Centre (BMRC), Melbourne, Australia
    330 schema:name Bureau of Meteorology Research Centre (BMRC), Melbourne, Australia
    331 rdf:type schema:Organization
    332 grid-institutes:grid.17100.37 schema:alternateName Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK
    333 schema:name Hadley Centre for Climate Prediction and Research, Met Office, FitzRoy Road, EX1 3PB, Exeter, UK
    334 rdf:type schema:Organization
    335 grid-institutes:grid.214458.e schema:alternateName Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI, USA
    336 schema:name Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI, USA
    337 rdf:type schema:Organization
    338 grid-institutes:grid.26790.3a schema:alternateName Rosenstiel School for Marine and Atmospheric Science, University of Miami, Miami, FL, USA
    339 schema:name Rosenstiel School for Marine and Atmospheric Science, University of Miami, Miami, FL, USA
    340 rdf:type schema:Organization
    341 grid-institutes:grid.35403.31 schema:alternateName Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign (UIUC), Urbana, IL, USA
    342 schema:name Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign (UIUC), Urbana, IL, USA
    343 rdf:type schema:Organization
    344 grid-institutes:grid.410588.0 schema:alternateName Frontier Research Center for Global Change (FRCGC), Japan Agency for Marine–Earth Science and Technology, Kanagawa, Japan
    345 schema:name Frontier Research Center for Global Change (FRCGC), Japan Agency for Marine–Earth Science and Technology, Kanagawa, Japan
    346 rdf:type schema:Organization
    347 grid-institutes:grid.423115.0 schema:alternateName Institut Pierre Simon Laplace (IPSL), Paris, France
    348 schema:name Institut Pierre Simon Laplace (IPSL), Paris, France
    349 rdf:type schema:Organization
    350 grid-institutes:grid.482795.5 schema:alternateName Geophysical Fluid Dynamics Laboratory (GFDL), Princeton, NJ, USA
    351 schema:name Geophysical Fluid Dynamics Laboratory (GFDL), Princeton, NJ, USA
    352 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...