Evaluation of a component of the cloud response to climate change in an intercomparison of climate models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-12-20

AUTHORS

K. D. Williams, M. A. Ringer, C. A. Senior, M. J. Webb, B. J. McAvaney, N. Andronova, S. Bony, J. -L. Dufresne, S. Emori, R. Gudgel, T. Knutson, B. Li, K. Lo, I. Musat, J. Wegner, A. Slingo, J. F. B. Mitchell

ABSTRACT

Most of the uncertainty in the climate sensitivity of contemporary general circulation models (GCMs) is believed to be connected with differences in the simulated radiative feedback from clouds. Traditional methods of evaluating clouds in GCMs compare time–mean geographical cloud fields or aspects of present-day cloud variability, with observational data. In both cases a hypothetical assumption is made that the quantity evaluated is relevant for the mean climate change response. Nine GCMs (atmosphere models coupled to mixed-layer ocean models) from the CFMIP and CMIP model comparison projects are used in this study to demonstrate a common relationship between the mean cloud response to climate change and present-day variability. Although atmosphere–mixed-layer ocean models are used here, the results are found to be equally applicable to transient coupled model simulations. When changes in cloud radiative forcing (CRF) are composited by changes in vertical velocity and saturated lower tropospheric stability, a component of the local mean climate change response can be related to present-day variability in all of the GCMs. This suggests that the relationship is not model specific and might be relevant in the real world. In this case, evaluation within the proposed compositing framework is a direct evaluation of a component of the cloud response to climate change. None of the models studied are found to be clearly superior or deficient when evaluated, but a couple appear to perform well on several relevant metrics. Whilst some broad similarities can be identified between the 60°N–60°S mean change in CRF to increased CO2 and that predicted from present-day variability, the two cannot be quantitatively constrained based on changes in vertical velocity and stability alone. Hence other processes also contribute to the global mean cloud response to climate change. More... »

PAGES

145-165

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-005-0067-7

DOI

http://dx.doi.org/10.1007/s00382-005-0067-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014995788


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Environmental Systems Science Centre, University of Reading, Reading, UK", 
          "id": "http://www.grid.ac/institutes/grid.9435.b", 
          "name": [
            "Met Office, Hadley Centre for Climate Prediction and Research, FitzRoy Road, EX1 3PB, Exeter, UK", 
            "Environmental Systems Science Centre, University of Reading, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Williams", 
        "givenName": "K. D.", 
        "id": "sg:person.014171235367.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014171235367.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office, Hadley Centre for Climate Prediction and Research, FitzRoy Road, EX1 3PB, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office, Hadley Centre for Climate Prediction and Research, FitzRoy Road, EX1 3PB, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ringer", 
        "givenName": "M. A.", 
        "id": "sg:person.011206742225.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011206742225.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office, Hadley Centre for Climate Prediction and Research, FitzRoy Road, EX1 3PB, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office, Hadley Centre for Climate Prediction and Research, FitzRoy Road, EX1 3PB, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Senior", 
        "givenName": "C. A.", 
        "id": "sg:person.012173370255.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012173370255.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office, Hadley Centre for Climate Prediction and Research, FitzRoy Road, EX1 3PB, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office, Hadley Centre for Climate Prediction and Research, FitzRoy Road, EX1 3PB, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Webb", 
        "givenName": "M. J.", 
        "id": "sg:person.010673066557.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010673066557.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bureau of Meteorology Research Centre, Sydney, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1527.1", 
          "name": [
            "Bureau of Meteorology Research Centre, Sydney, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McAvaney", 
        "givenName": "B. J.", 
        "id": "sg:person.012760473521.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012760473521.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andronova", 
        "givenName": "N.", 
        "id": "sg:person.014372533443.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014372533443.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Pierre Simon Laplace, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.423115.0", 
          "name": [
            "Institut Pierre Simon Laplace, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bony", 
        "givenName": "S.", 
        "id": "sg:person.013647160343.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Pierre Simon Laplace, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.423115.0", 
          "name": [
            "Institut Pierre Simon Laplace, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dufresne", 
        "givenName": "J. -L.", 
        "id": "sg:person.01075255253.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075255253.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Environmental Studies, Ibaraki, Japan", 
          "id": "http://www.grid.ac/institutes/grid.140139.e", 
          "name": [
            "National Institute for Environmental Studies, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Emori", 
        "givenName": "S.", 
        "id": "sg:person.016137466477.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137466477.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.482795.5", 
          "name": [
            "Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gudgel", 
        "givenName": "R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.482795.5", 
          "name": [
            "Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Knutson", 
        "givenName": "T.", 
        "id": "sg:person.012007322515.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012007322515.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA", 
          "id": "http://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "B.", 
        "id": "sg:person.012365737173.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012365737173.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Goddard Institute for Space Studies, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.419078.3", 
          "name": [
            "Goddard Institute for Space Studies, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lo", 
        "givenName": "K.", 
        "id": "sg:person.012623516727.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012623516727.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Pierre Simon Laplace, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.423115.0", 
          "name": [
            "Institut Pierre Simon Laplace, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Musat", 
        "givenName": "I.", 
        "id": "sg:person.013024470237.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013024470237.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Meteorology, Hamburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450268.d", 
          "name": [
            "Max Planck Institute for Meteorology, Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wegner", 
        "givenName": "J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Environmental Systems Science Centre, University of Reading, Reading, UK", 
          "id": "http://www.grid.ac/institutes/grid.9435.b", 
          "name": [
            "Environmental Systems Science Centre, University of Reading, Reading, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Slingo", 
        "givenName": "A.", 
        "id": "sg:person.010075053627.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010075053627.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office, Hadley Centre for Climate Prediction and Research, FitzRoy Road, EX1 3PB, Exeter, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office, Hadley Centre for Climate Prediction and Research, FitzRoy Road, EX1 3PB, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mitchell", 
        "givenName": "J. F. B.", 
        "id": "sg:person.012141527247.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012141527247.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s003820100157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036889233", 
          "https://doi.org/10.1007/s003820100157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-002-0303-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086158322", 
          "https://doi.org/10.1007/s00382-002-0303-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036499414", 
          "https://doi.org/10.1038/nature02771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-003-0310-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084987147", 
          "https://doi.org/10.1007/s00382-003-0310-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002170907", 
          "https://doi.org/10.1007/s003820050009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416719a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016686487", 
          "https://doi.org/10.1038/416719a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/351027a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048642785", 
          "https://doi.org/10.1038/351027a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-003-0369-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014795140", 
          "https://doi.org/10.1007/s00382-003-0369-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-12-20", 
    "datePublishedReg": "2005-12-20", 
    "description": "Most of the uncertainty in the climate sensitivity of contemporary general circulation models (GCMs) is believed to be connected with differences in the simulated radiative feedback from clouds. Traditional methods of evaluating clouds in GCMs compare time\u2013mean geographical cloud fields or aspects of present-day cloud variability, with observational data. In both cases a hypothetical assumption is made that the quantity evaluated is relevant for the mean climate change response. Nine GCMs (atmosphere models coupled to mixed-layer ocean models) from the CFMIP and CMIP model comparison projects are used in this study to demonstrate a common relationship between the mean cloud response to climate change and present-day variability. Although atmosphere\u2013mixed-layer ocean models are used here, the results are found to be equally applicable to transient coupled model simulations. When changes in cloud radiative forcing (CRF) are composited by changes in vertical velocity and saturated lower tropospheric stability, a component of the local mean climate change response can be related to present-day variability in all of the GCMs. This suggests that the relationship is not model specific and might be relevant in the real world. In this case, evaluation within the proposed compositing framework is a direct evaluation of a component of the cloud response to climate change. None of the models studied are found to be clearly superior or deficient when evaluated, but a couple appear to perform well on several relevant metrics. Whilst some broad similarities can be identified between the 60\u00b0N\u201360\u00b0S mean change in CRF to increased CO2 and that predicted from present-day variability, the two cannot be quantitatively constrained based on changes in vertical velocity and stability alone. Hence other processes also contribute to the global mean cloud response to climate change.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-005-0067-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "keywords": [
      "general circulation model", 
      "present-day variability", 
      "cloud radiative forcing", 
      "cloud response", 
      "climate change responses", 
      "climate change", 
      "contemporary general circulation models", 
      "vertical velocity", 
      "layer ocean model", 
      "lower tropospheric stability", 
      "change response", 
      "ocean model", 
      "climate models", 
      "circulation model", 
      "climate sensitivity", 
      "tropospheric stability", 
      "cloud variability", 
      "radiative feedback", 
      "radiative forcing", 
      "model simulations", 
      "cloud fields", 
      "broad similarities", 
      "observational data", 
      "variability", 
      "Comparison Project", 
      "cloud", 
      "forcing", 
      "CFMIP", 
      "intercomparison", 
      "common relationship", 
      "N-60", 
      "velocity", 
      "changes", 
      "CO2", 
      "hypothetical assumptions", 
      "model", 
      "uncertainty", 
      "relevant metrics", 
      "components", 
      "feedback", 
      "relationship", 
      "data", 
      "simulations", 
      "quantity", 
      "response", 
      "field", 
      "process", 
      "similarity", 
      "direct evaluation", 
      "project", 
      "world", 
      "assumption", 
      "traditional methods", 
      "results", 
      "stability", 
      "differences", 
      "study", 
      "framework", 
      "sensitivity", 
      "evaluation", 
      "metrics", 
      "aspects", 
      "cases", 
      "method", 
      "real world", 
      "couples", 
      "time\u2013mean geographical cloud fields", 
      "geographical cloud fields", 
      "present-day cloud variability", 
      "mean climate change response", 
      "CMIP model comparison projects", 
      "model comparison projects", 
      "mean cloud response", 
      "local mean climate change response", 
      "global mean cloud response"
    ], 
    "name": "Evaluation of a component of the cloud response to climate change in an intercomparison of climate models", 
    "pagination": "145-165", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014995788"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-005-0067-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-005-0067-7", 
      "https://app.dimensions.ai/details/publication/pub.1014995788"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_399.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-005-0067-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-005-0067-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-005-0067-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-005-0067-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-005-0067-7'


 

This table displays all metadata directly associated to this object as RDF triples.

300 TRIPLES      22 PREDICATES      108 URIs      92 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-005-0067-7 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author Nfa001752df4e46118bd9252712b0788a
4 schema:citation sg:pub.10.1007/s00382-002-0303-3
5 sg:pub.10.1007/s00382-003-0310-z
6 sg:pub.10.1007/s00382-003-0369-6
7 sg:pub.10.1007/s003820050009
8 sg:pub.10.1007/s003820100157
9 sg:pub.10.1038/351027a0
10 sg:pub.10.1038/416719a
11 sg:pub.10.1038/nature02771
12 schema:datePublished 2005-12-20
13 schema:datePublishedReg 2005-12-20
14 schema:description Most of the uncertainty in the climate sensitivity of contemporary general circulation models (GCMs) is believed to be connected with differences in the simulated radiative feedback from clouds. Traditional methods of evaluating clouds in GCMs compare time–mean geographical cloud fields or aspects of present-day cloud variability, with observational data. In both cases a hypothetical assumption is made that the quantity evaluated is relevant for the mean climate change response. Nine GCMs (atmosphere models coupled to mixed-layer ocean models) from the CFMIP and CMIP model comparison projects are used in this study to demonstrate a common relationship between the mean cloud response to climate change and present-day variability. Although atmosphere–mixed-layer ocean models are used here, the results are found to be equally applicable to transient coupled model simulations. When changes in cloud radiative forcing (CRF) are composited by changes in vertical velocity and saturated lower tropospheric stability, a component of the local mean climate change response can be related to present-day variability in all of the GCMs. This suggests that the relationship is not model specific and might be relevant in the real world. In this case, evaluation within the proposed compositing framework is a direct evaluation of a component of the cloud response to climate change. None of the models studied are found to be clearly superior or deficient when evaluated, but a couple appear to perform well on several relevant metrics. Whilst some broad similarities can be identified between the 60°N–60°S mean change in CRF to increased CO2 and that predicted from present-day variability, the two cannot be quantitatively constrained based on changes in vertical velocity and stability alone. Hence other processes also contribute to the global mean cloud response to climate change.
15 schema:genre article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N2c48407593f649038564473015b79cef
19 Nb394d7aa25d84b168579d6fdb1085d4c
20 sg:journal.1049631
21 schema:keywords CFMIP
22 CMIP model comparison projects
23 CO2
24 Comparison Project
25 N-60
26 aspects
27 assumption
28 broad similarities
29 cases
30 change response
31 changes
32 circulation model
33 climate change
34 climate change responses
35 climate models
36 climate sensitivity
37 cloud
38 cloud fields
39 cloud radiative forcing
40 cloud response
41 cloud variability
42 common relationship
43 components
44 contemporary general circulation models
45 couples
46 data
47 differences
48 direct evaluation
49 evaluation
50 feedback
51 field
52 forcing
53 framework
54 general circulation model
55 geographical cloud fields
56 global mean cloud response
57 hypothetical assumptions
58 intercomparison
59 layer ocean model
60 local mean climate change response
61 lower tropospheric stability
62 mean climate change response
63 mean cloud response
64 method
65 metrics
66 model
67 model comparison projects
68 model simulations
69 observational data
70 ocean model
71 present-day cloud variability
72 present-day variability
73 process
74 project
75 quantity
76 radiative feedback
77 radiative forcing
78 real world
79 relationship
80 relevant metrics
81 response
82 results
83 sensitivity
84 similarity
85 simulations
86 stability
87 study
88 time–mean geographical cloud fields
89 traditional methods
90 tropospheric stability
91 uncertainty
92 variability
93 velocity
94 vertical velocity
95 world
96 schema:name Evaluation of a component of the cloud response to climate change in an intercomparison of climate models
97 schema:pagination 145-165
98 schema:productId N9a9e7ff125124d6b8d0c370886caaefb
99 Nf77a62f70c8b4cd5b2993c4b10de4b9f
100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014995788
101 https://doi.org/10.1007/s00382-005-0067-7
102 schema:sdDatePublished 2021-12-01T19:16
103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
104 schema:sdPublisher N0ccdc853ad27425ba8ced93a8f1b83f9
105 schema:url https://doi.org/10.1007/s00382-005-0067-7
106 sgo:license sg:explorer/license/
107 sgo:sdDataset articles
108 rdf:type schema:ScholarlyArticle
109 N0ccdc853ad27425ba8ced93a8f1b83f9 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 N0dc97d3f42b94c2d863dcc20fa041cca rdf:first sg:person.013647160343.22
112 rdf:rest N9453ed8ef6ef407ca3afeb6f43b788ed
113 N2c48407593f649038564473015b79cef schema:issueNumber 2-3
114 rdf:type schema:PublicationIssue
115 N46bcfc39e8474cfd81d1617829970be2 rdf:first sg:person.013024470237.39
116 rdf:rest N75936548a3b341cebc295ba16fa5f2e2
117 N5432ed3e882a4077bb1e007aaa32878a rdf:first sg:person.012173370255.92
118 rdf:rest Naa39911d5f6649c5a7f9e5bce23c2616
119 N5e4cbce81f434f21b2ca8a07329aecd3 rdf:first sg:person.012365737173.79
120 rdf:rest Nc540d4a3930f4a2ca60ec46d9c837f87
121 N6498bbbd2d324a52a100259759daa17c rdf:first sg:person.016137466477.58
122 rdf:rest Na3941265f58e46c8b46436c0c285518e
123 N6dca6ce4b35f4ad2b082f2c5857b41e3 rdf:first sg:person.012141527247.99
124 rdf:rest rdf:nil
125 N75936548a3b341cebc295ba16fa5f2e2 rdf:first N91ca1aba49c745f2b5598c288a99cf3c
126 rdf:rest Nf0e5dda8b5d343e092c1994ae530fa34
127 N8fa3614ed5ec444daa7b1d6cedd3b5c6 rdf:first sg:person.012007322515.88
128 rdf:rest N5e4cbce81f434f21b2ca8a07329aecd3
129 N91ca1aba49c745f2b5598c288a99cf3c schema:affiliation grid-institutes:grid.450268.d
130 schema:familyName Wegner
131 schema:givenName J.
132 rdf:type schema:Person
133 N9453ed8ef6ef407ca3afeb6f43b788ed rdf:first sg:person.01075255253.14
134 rdf:rest N6498bbbd2d324a52a100259759daa17c
135 N9a9e7ff125124d6b8d0c370886caaefb schema:name dimensions_id
136 schema:value pub.1014995788
137 rdf:type schema:PropertyValue
138 Na3941265f58e46c8b46436c0c285518e rdf:first Nf401aec658bf4b67962dd3794c0db381
139 rdf:rest N8fa3614ed5ec444daa7b1d6cedd3b5c6
140 Naa39911d5f6649c5a7f9e5bce23c2616 rdf:first sg:person.010673066557.41
141 rdf:rest Nf4c20324eea84d029bef0721330b695b
142 Nb394d7aa25d84b168579d6fdb1085d4c schema:volumeNumber 26
143 rdf:type schema:PublicationVolume
144 Nc540d4a3930f4a2ca60ec46d9c837f87 rdf:first sg:person.012623516727.80
145 rdf:rest N46bcfc39e8474cfd81d1617829970be2
146 Nca7a8d24e1624e8bb6b2d5f9196e56ec rdf:first sg:person.014372533443.13
147 rdf:rest N0dc97d3f42b94c2d863dcc20fa041cca
148 Nd53bb4677cfc4509adc2b42de16905a9 rdf:first sg:person.011206742225.33
149 rdf:rest N5432ed3e882a4077bb1e007aaa32878a
150 Nf0e5dda8b5d343e092c1994ae530fa34 rdf:first sg:person.010075053627.73
151 rdf:rest N6dca6ce4b35f4ad2b082f2c5857b41e3
152 Nf401aec658bf4b67962dd3794c0db381 schema:affiliation grid-institutes:grid.482795.5
153 schema:familyName Gudgel
154 schema:givenName R.
155 rdf:type schema:Person
156 Nf4c20324eea84d029bef0721330b695b rdf:first sg:person.012760473521.51
157 rdf:rest Nca7a8d24e1624e8bb6b2d5f9196e56ec
158 Nf77a62f70c8b4cd5b2993c4b10de4b9f schema:name doi
159 schema:value 10.1007/s00382-005-0067-7
160 rdf:type schema:PropertyValue
161 Nfa001752df4e46118bd9252712b0788a rdf:first sg:person.014171235367.23
162 rdf:rest Nd53bb4677cfc4509adc2b42de16905a9
163 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
164 schema:name Earth Sciences
165 rdf:type schema:DefinedTerm
166 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
167 schema:name Atmospheric Sciences
168 rdf:type schema:DefinedTerm
169 sg:journal.1049631 schema:issn 0930-7575
170 1432-0894
171 schema:name Climate Dynamics
172 schema:publisher Springer Nature
173 rdf:type schema:Periodical
174 sg:person.010075053627.73 schema:affiliation grid-institutes:grid.9435.b
175 schema:familyName Slingo
176 schema:givenName A.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010075053627.73
178 rdf:type schema:Person
179 sg:person.010673066557.41 schema:affiliation grid-institutes:grid.17100.37
180 schema:familyName Webb
181 schema:givenName M. J.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010673066557.41
183 rdf:type schema:Person
184 sg:person.01075255253.14 schema:affiliation grid-institutes:grid.423115.0
185 schema:familyName Dufresne
186 schema:givenName J. -L.
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075255253.14
188 rdf:type schema:Person
189 sg:person.011206742225.33 schema:affiliation grid-institutes:grid.17100.37
190 schema:familyName Ringer
191 schema:givenName M. A.
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011206742225.33
193 rdf:type schema:Person
194 sg:person.012007322515.88 schema:affiliation grid-institutes:grid.482795.5
195 schema:familyName Knutson
196 schema:givenName T.
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012007322515.88
198 rdf:type schema:Person
199 sg:person.012141527247.99 schema:affiliation grid-institutes:grid.17100.37
200 schema:familyName Mitchell
201 schema:givenName J. F. B.
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012141527247.99
203 rdf:type schema:Person
204 sg:person.012173370255.92 schema:affiliation grid-institutes:grid.17100.37
205 schema:familyName Senior
206 schema:givenName C. A.
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012173370255.92
208 rdf:type schema:Person
209 sg:person.012365737173.79 schema:affiliation grid-institutes:grid.35403.31
210 schema:familyName Li
211 schema:givenName B.
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012365737173.79
213 rdf:type schema:Person
214 sg:person.012623516727.80 schema:affiliation grid-institutes:grid.419078.3
215 schema:familyName Lo
216 schema:givenName K.
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012623516727.80
218 rdf:type schema:Person
219 sg:person.012760473521.51 schema:affiliation grid-institutes:grid.1527.1
220 schema:familyName McAvaney
221 schema:givenName B. J.
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012760473521.51
223 rdf:type schema:Person
224 sg:person.013024470237.39 schema:affiliation grid-institutes:grid.423115.0
225 schema:familyName Musat
226 schema:givenName I.
227 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013024470237.39
228 rdf:type schema:Person
229 sg:person.013647160343.22 schema:affiliation grid-institutes:grid.423115.0
230 schema:familyName Bony
231 schema:givenName S.
232 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22
233 rdf:type schema:Person
234 sg:person.014171235367.23 schema:affiliation grid-institutes:grid.9435.b
235 schema:familyName Williams
236 schema:givenName K. D.
237 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014171235367.23
238 rdf:type schema:Person
239 sg:person.014372533443.13 schema:affiliation grid-institutes:grid.35403.31
240 schema:familyName Andronova
241 schema:givenName N.
242 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014372533443.13
243 rdf:type schema:Person
244 sg:person.016137466477.58 schema:affiliation grid-institutes:grid.140139.e
245 schema:familyName Emori
246 schema:givenName S.
247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016137466477.58
248 rdf:type schema:Person
249 sg:pub.10.1007/s00382-002-0303-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086158322
250 https://doi.org/10.1007/s00382-002-0303-3
251 rdf:type schema:CreativeWork
252 sg:pub.10.1007/s00382-003-0310-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1084987147
253 https://doi.org/10.1007/s00382-003-0310-z
254 rdf:type schema:CreativeWork
255 sg:pub.10.1007/s00382-003-0369-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014795140
256 https://doi.org/10.1007/s00382-003-0369-6
257 rdf:type schema:CreativeWork
258 sg:pub.10.1007/s003820050009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002170907
259 https://doi.org/10.1007/s003820050009
260 rdf:type schema:CreativeWork
261 sg:pub.10.1007/s003820100157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036889233
262 https://doi.org/10.1007/s003820100157
263 rdf:type schema:CreativeWork
264 sg:pub.10.1038/351027a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048642785
265 https://doi.org/10.1038/351027a0
266 rdf:type schema:CreativeWork
267 sg:pub.10.1038/416719a schema:sameAs https://app.dimensions.ai/details/publication/pub.1016686487
268 https://doi.org/10.1038/416719a
269 rdf:type schema:CreativeWork
270 sg:pub.10.1038/nature02771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036499414
271 https://doi.org/10.1038/nature02771
272 rdf:type schema:CreativeWork
273 grid-institutes:grid.140139.e schema:alternateName National Institute for Environmental Studies, Ibaraki, Japan
274 schema:name National Institute for Environmental Studies, Ibaraki, Japan
275 rdf:type schema:Organization
276 grid-institutes:grid.1527.1 schema:alternateName Bureau of Meteorology Research Centre, Sydney, Australia
277 schema:name Bureau of Meteorology Research Centre, Sydney, Australia
278 rdf:type schema:Organization
279 grid-institutes:grid.17100.37 schema:alternateName Met Office, Hadley Centre for Climate Prediction and Research, FitzRoy Road, EX1 3PB, Exeter, UK
280 schema:name Met Office, Hadley Centre for Climate Prediction and Research, FitzRoy Road, EX1 3PB, Exeter, UK
281 rdf:type schema:Organization
282 grid-institutes:grid.35403.31 schema:alternateName Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
283 schema:name Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA
284 rdf:type schema:Organization
285 grid-institutes:grid.419078.3 schema:alternateName Goddard Institute for Space Studies, New York, USA
286 schema:name Goddard Institute for Space Studies, New York, USA
287 rdf:type schema:Organization
288 grid-institutes:grid.423115.0 schema:alternateName Institut Pierre Simon Laplace, Paris, France
289 schema:name Institut Pierre Simon Laplace, Paris, France
290 rdf:type schema:Organization
291 grid-institutes:grid.450268.d schema:alternateName Max Planck Institute for Meteorology, Hamburg, Germany
292 schema:name Max Planck Institute for Meteorology, Hamburg, Germany
293 rdf:type schema:Organization
294 grid-institutes:grid.482795.5 schema:alternateName Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
295 schema:name Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
296 rdf:type schema:Organization
297 grid-institutes:grid.9435.b schema:alternateName Environmental Systems Science Centre, University of Reading, Reading, UK
298 schema:name Environmental Systems Science Centre, University of Reading, Reading, UK
299 Met Office, Hadley Centre for Climate Prediction and Research, FitzRoy Road, EX1 3PB, Exeter, UK
300 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...