An AOGCM simulation of the climate response to a volcanic super-eruption View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-10-05

AUTHORS

Gareth S. Jones, Jonathan M. Gregory, Peter A. Stott, Simon F. B. Tett, Robert B. Thorpe

ABSTRACT

Volcanic ‘super-eruptions’ have been suggested to have significantly influenced the Earth’s climate, perhaps causing glaciations and impacting on the human population. Climatic changes following a hypothetical ‘super-eruption’ are simulated using a coupled atmosphere ocean general circulation model, incorporating scaled volcanic stratospheric aerosols. Assumptions are made about the stratospheric sulphate aerosol loading, size distribution, lifetime, chemical make up and spatial distribution. As this study is concentrating on the physical climatological impacts over long timescales, microphysics and chemical interactive processes are not simulated. Near-surface temperatures fall by as much as 10 K globally for a few months and a considerable deviation from normal temperatures continues for several decades. A warming pattern is evident over northern land masses during the winter due to increased longwave forcing and a positive AO mode. The overturning rate of the North Atlantic thermohaline circulation doubles in intensity. Snow and ice increases in extent to a maximum coverage of 35% of the Earth. Despite these and other impacts longer term climatic changes that could lead to a transition to a glaciation do not occur, for present day boundary conditions and one possible plausible aerosol loading. More... »

PAGES

725-738

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-005-0066-8

DOI

http://dx.doi.org/10.1007/s00382-005-0066-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046003741


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Met Office, Hadley Centre for Climate Prediction and Research, FitzRoy Road, EX1 3PB, Exeter, Devon, United Kingdom", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office, Hadley Centre for Climate Prediction and Research, FitzRoy Road, EX1 3PB, Exeter, Devon, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jones", 
        "givenName": "Gareth S.", 
        "id": "sg:person.012111414471.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012111414471.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CGAM, Department of Meteorology, University of Reading, Earley Gate, PO Box 243, RG6 6BB, Reading, United Kingdom", 
          "id": "http://www.grid.ac/institutes/grid.9435.b", 
          "name": [
            "Met Office, Hadley Centre for Climate Prediction and Research, FitzRoy Road, EX1 3PB, Exeter, Devon, United Kingdom", 
            "CGAM, Department of Meteorology, University of Reading, Earley Gate, PO Box 243, RG6 6BB, Reading, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gregory", 
        "givenName": "Jonathan M.", 
        "id": "sg:person.0776106250.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776106250.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office, Hadley Centre (Reading Unit), Meteorology Building, University of Reading, Earley Gate, PO Box 243, RG6 6BB, Reading, United Kingdom", 
          "id": "http://www.grid.ac/institutes/grid.9435.b", 
          "name": [
            "Met Office, Hadley Centre (Reading Unit), Meteorology Building, University of Reading, Earley Gate, PO Box 243, RG6 6BB, Reading, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stott", 
        "givenName": "Peter A.", 
        "id": "sg:person.015667030077.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667030077.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office, Hadley Centre (Reading Unit), Meteorology Building, University of Reading, Earley Gate, PO Box 243, RG6 6BB, Reading, United Kingdom", 
          "id": "http://www.grid.ac/institutes/grid.9435.b", 
          "name": [
            "Met Office, Hadley Centre (Reading Unit), Meteorology Building, University of Reading, Earley Gate, PO Box 243, RG6 6BB, Reading, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tett", 
        "givenName": "Simon F. B.", 
        "id": "sg:person.01025613710.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025613710.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office, Hadley Centre for Climate Prediction and Research, FitzRoy Road, EX1 3PB, Exeter, Devon, United Kingdom", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office, Hadley Centre for Climate Prediction and Research, FitzRoy Road, EX1 3PB, Exeter, Devon, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thorpe", 
        "givenName": "Robert B.", 
        "id": "sg:person.016062355675.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016062355675.66"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s003820050009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002170907", 
          "https://doi.org/10.1007/s003820050009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046916950", 
          "https://doi.org/10.1038/nature01092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1016168827653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046187375", 
          "https://doi.org/10.1023/a:1016168827653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-002-0296-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085138454", 
          "https://doi.org/10.1007/s00382-002-0296-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015242699", 
          "https://doi.org/10.1007/s003820050010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0884-33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056586354", 
          "https://doi.org/10.1038/scientificamerican0884-33"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/359050a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018410794", 
          "https://doi.org/10.1038/359050a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-004-0431-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021729158", 
          "https://doi.org/10.1007/s00382-004-0431-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036499414", 
          "https://doi.org/10.1038/nature02771"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-10-05", 
    "datePublishedReg": "2005-10-05", 
    "description": "Volcanic \u2018super-eruptions\u2019 have been suggested to have significantly influenced the Earth\u2019s climate, perhaps causing glaciations and impacting on the human population. Climatic changes following a hypothetical \u2018super-eruption\u2019 are simulated using a coupled atmosphere ocean general circulation model, incorporating scaled volcanic stratospheric aerosols. Assumptions are made about the stratospheric sulphate aerosol loading, size distribution, lifetime, chemical make up and spatial distribution. As this study is concentrating on the physical climatological impacts over long timescales, microphysics and chemical interactive processes are not simulated. Near-surface temperatures fall by as much as 10\u00a0K globally for a few months and a considerable deviation from normal temperatures continues for several decades. A warming pattern is evident over northern land masses during the winter due to increased longwave forcing and a positive AO mode. The overturning rate of the North Atlantic thermohaline circulation doubles in intensity. Snow and ice increases in extent to a maximum coverage of 35% of the Earth. Despite these and other impacts longer term climatic changes that could lead to a transition to a glaciation do not occur, for present day boundary conditions and one possible plausible aerosol loading.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-005-0066-8", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7-8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "keywords": [
      "aerosol loading", 
      "climatic changes", 
      "atmosphere-ocean general circulation model", 
      "stratospheric sulfate aerosol loadings", 
      "present-day boundary conditions", 
      "ocean general circulation model", 
      "North Atlantic thermohaline circulation", 
      "Atlantic thermohaline circulation", 
      "volcanic stratospheric aerosols", 
      "sulfate aerosol loading", 
      "near-surface temperature", 
      "northern land masses", 
      "general circulation model", 
      "overturning rate", 
      "AOGCM simulations", 
      "thermohaline circulation", 
      "warming pattern", 
      "Earth's climate", 
      "circulation model", 
      "climate response", 
      "stratospheric aerosols", 
      "climatological impacts", 
      "longwave forcing", 
      "ice increases", 
      "land mass", 
      "longer timescales", 
      "Ao mode", 
      "spatial distribution", 
      "glaciation", 
      "climate", 
      "size distribution", 
      "forcing", 
      "microphysics", 
      "aerosols", 
      "snow", 
      "timescales", 
      "Earth", 
      "winter", 
      "circulation", 
      "boundary conditions", 
      "distribution", 
      "normal temperature", 
      "temperature", 
      "human population", 
      "considerable deviations", 
      "changes", 
      "impact", 
      "interactive process", 
      "loading", 
      "patterns", 
      "intensity", 
      "decades", 
      "extent", 
      "chemicals", 
      "mass", 
      "simulations", 
      "coverage", 
      "maximum coverage", 
      "conditions", 
      "model", 
      "process", 
      "transition", 
      "increase", 
      "deviation", 
      "assumption", 
      "rate", 
      "mode", 
      "response", 
      "study", 
      "lifetime", 
      "months", 
      "population"
    ], 
    "name": "An AOGCM simulation of the climate response to a volcanic super-eruption", 
    "pagination": "725-738", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046003741"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-005-0066-8"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-005-0066-8", 
      "https://app.dimensions.ai/details/publication/pub.1046003741"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_393.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-005-0066-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-005-0066-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-005-0066-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-005-0066-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-005-0066-8'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      21 PREDICATES      106 URIs      88 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-005-0066-8 schema:about anzsrc-for:04
2 anzsrc-for:0403
3 anzsrc-for:0406
4 schema:author Necf4f9c65e3d4cadba6b77225d73ccb7
5 schema:citation sg:pub.10.1007/s00382-002-0296-y
6 sg:pub.10.1007/s00382-004-0431-z
7 sg:pub.10.1007/s003820050009
8 sg:pub.10.1007/s003820050010
9 sg:pub.10.1023/a:1016168827653
10 sg:pub.10.1038/359050a0
11 sg:pub.10.1038/nature01092
12 sg:pub.10.1038/nature02771
13 sg:pub.10.1038/scientificamerican0884-33
14 schema:datePublished 2005-10-05
15 schema:datePublishedReg 2005-10-05
16 schema:description Volcanic ‘super-eruptions’ have been suggested to have significantly influenced the Earth’s climate, perhaps causing glaciations and impacting on the human population. Climatic changes following a hypothetical ‘super-eruption’ are simulated using a coupled atmosphere ocean general circulation model, incorporating scaled volcanic stratospheric aerosols. Assumptions are made about the stratospheric sulphate aerosol loading, size distribution, lifetime, chemical make up and spatial distribution. As this study is concentrating on the physical climatological impacts over long timescales, microphysics and chemical interactive processes are not simulated. Near-surface temperatures fall by as much as 10 K globally for a few months and a considerable deviation from normal temperatures continues for several decades. A warming pattern is evident over northern land masses during the winter due to increased longwave forcing and a positive AO mode. The overturning rate of the North Atlantic thermohaline circulation doubles in intensity. Snow and ice increases in extent to a maximum coverage of 35% of the Earth. Despite these and other impacts longer term climatic changes that could lead to a transition to a glaciation do not occur, for present day boundary conditions and one possible plausible aerosol loading.
17 schema:genre article
18 schema:isAccessibleForFree false
19 schema:isPartOf N24944169c5e643a6979079ba4c0e7b11
20 N89c591d4eb694930a001ea43ebe5abca
21 sg:journal.1049631
22 schema:keywords AOGCM simulations
23 Ao mode
24 Atlantic thermohaline circulation
25 Earth
26 Earth's climate
27 North Atlantic thermohaline circulation
28 aerosol loading
29 aerosols
30 assumption
31 atmosphere-ocean general circulation model
32 boundary conditions
33 changes
34 chemicals
35 circulation
36 circulation model
37 climate
38 climate response
39 climatic changes
40 climatological impacts
41 conditions
42 considerable deviations
43 coverage
44 decades
45 deviation
46 distribution
47 extent
48 forcing
49 general circulation model
50 glaciation
51 human population
52 ice increases
53 impact
54 increase
55 intensity
56 interactive process
57 land mass
58 lifetime
59 loading
60 longer timescales
61 longwave forcing
62 mass
63 maximum coverage
64 microphysics
65 mode
66 model
67 months
68 near-surface temperature
69 normal temperature
70 northern land masses
71 ocean general circulation model
72 overturning rate
73 patterns
74 population
75 present-day boundary conditions
76 process
77 rate
78 response
79 simulations
80 size distribution
81 snow
82 spatial distribution
83 stratospheric aerosols
84 stratospheric sulfate aerosol loadings
85 study
86 sulfate aerosol loading
87 temperature
88 thermohaline circulation
89 timescales
90 transition
91 volcanic stratospheric aerosols
92 warming pattern
93 winter
94 schema:name An AOGCM simulation of the climate response to a volcanic super-eruption
95 schema:pagination 725-738
96 schema:productId N4dcb2cdf85324bbaae372efa9f338fe8
97 Nb253e0c329014e6197a6bb3d569aae23
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046003741
99 https://doi.org/10.1007/s00382-005-0066-8
100 schema:sdDatePublished 2022-11-24T20:51
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher N95dedd9713274bd091fa74cca942262b
103 schema:url https://doi.org/10.1007/s00382-005-0066-8
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N174e7abfdfac4f348fa59ea50d49821b rdf:first sg:person.0776106250.41
108 rdf:rest N2521563441d14fb2a727846baf7843c5
109 N24944169c5e643a6979079ba4c0e7b11 schema:issueNumber 7-8
110 rdf:type schema:PublicationIssue
111 N2521563441d14fb2a727846baf7843c5 rdf:first sg:person.015667030077.29
112 rdf:rest N91e9648a111746669053904a321dc171
113 N4dcb2cdf85324bbaae372efa9f338fe8 schema:name dimensions_id
114 schema:value pub.1046003741
115 rdf:type schema:PropertyValue
116 N4eb0332fe0b24f439ddf6322ef181977 rdf:first sg:person.016062355675.66
117 rdf:rest rdf:nil
118 N89c591d4eb694930a001ea43ebe5abca schema:volumeNumber 25
119 rdf:type schema:PublicationVolume
120 N91e9648a111746669053904a321dc171 rdf:first sg:person.01025613710.20
121 rdf:rest N4eb0332fe0b24f439ddf6322ef181977
122 N95dedd9713274bd091fa74cca942262b schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 Nb253e0c329014e6197a6bb3d569aae23 schema:name doi
125 schema:value 10.1007/s00382-005-0066-8
126 rdf:type schema:PropertyValue
127 Necf4f9c65e3d4cadba6b77225d73ccb7 rdf:first sg:person.012111414471.07
128 rdf:rest N174e7abfdfac4f348fa59ea50d49821b
129 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
130 schema:name Earth Sciences
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
133 schema:name Geology
134 rdf:type schema:DefinedTerm
135 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
136 schema:name Physical Geography and Environmental Geoscience
137 rdf:type schema:DefinedTerm
138 sg:journal.1049631 schema:issn 0930-7575
139 1432-0894
140 schema:name Climate Dynamics
141 schema:publisher Springer Nature
142 rdf:type schema:Periodical
143 sg:person.01025613710.20 schema:affiliation grid-institutes:grid.9435.b
144 schema:familyName Tett
145 schema:givenName Simon F. B.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025613710.20
147 rdf:type schema:Person
148 sg:person.012111414471.07 schema:affiliation grid-institutes:grid.17100.37
149 schema:familyName Jones
150 schema:givenName Gareth S.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012111414471.07
152 rdf:type schema:Person
153 sg:person.015667030077.29 schema:affiliation grid-institutes:grid.9435.b
154 schema:familyName Stott
155 schema:givenName Peter A.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667030077.29
157 rdf:type schema:Person
158 sg:person.016062355675.66 schema:affiliation grid-institutes:grid.17100.37
159 schema:familyName Thorpe
160 schema:givenName Robert B.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016062355675.66
162 rdf:type schema:Person
163 sg:person.0776106250.41 schema:affiliation grid-institutes:grid.9435.b
164 schema:familyName Gregory
165 schema:givenName Jonathan M.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776106250.41
167 rdf:type schema:Person
168 sg:pub.10.1007/s00382-002-0296-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1085138454
169 https://doi.org/10.1007/s00382-002-0296-y
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s00382-004-0431-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1021729158
172 https://doi.org/10.1007/s00382-004-0431-z
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s003820050009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002170907
175 https://doi.org/10.1007/s003820050009
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s003820050010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015242699
178 https://doi.org/10.1007/s003820050010
179 rdf:type schema:CreativeWork
180 sg:pub.10.1023/a:1016168827653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046187375
181 https://doi.org/10.1023/a:1016168827653
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/359050a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018410794
184 https://doi.org/10.1038/359050a0
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nature01092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046916950
187 https://doi.org/10.1038/nature01092
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nature02771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036499414
190 https://doi.org/10.1038/nature02771
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/scientificamerican0884-33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056586354
193 https://doi.org/10.1038/scientificamerican0884-33
194 rdf:type schema:CreativeWork
195 grid-institutes:grid.17100.37 schema:alternateName Met Office, Hadley Centre for Climate Prediction and Research, FitzRoy Road, EX1 3PB, Exeter, Devon, United Kingdom
196 schema:name Met Office, Hadley Centre for Climate Prediction and Research, FitzRoy Road, EX1 3PB, Exeter, Devon, United Kingdom
197 rdf:type schema:Organization
198 grid-institutes:grid.9435.b schema:alternateName CGAM, Department of Meteorology, University of Reading, Earley Gate, PO Box 243, RG6 6BB, Reading, United Kingdom
199 Met Office, Hadley Centre (Reading Unit), Meteorology Building, University of Reading, Earley Gate, PO Box 243, RG6 6BB, Reading, United Kingdom
200 schema:name CGAM, Department of Meteorology, University of Reading, Earley Gate, PO Box 243, RG6 6BB, Reading, United Kingdom
201 Met Office, Hadley Centre (Reading Unit), Meteorology Building, University of Reading, Earley Gate, PO Box 243, RG6 6BB, Reading, United Kingdom
202 Met Office, Hadley Centre for Climate Prediction and Research, FitzRoy Road, EX1 3PB, Exeter, Devon, United Kingdom
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...