Ontology type: schema:ScholarlyArticle Open Access: True
2004-11-09
AUTHORSJohannes Quaas, Olivier Boucher, Jean-Louis Dufresne, Hervé Le Treut
ABSTRACTAmong anthropogenic perturbations of the Earth’s atmosphere, greenhouse gases and aerosols are considered to have a major impact on the energy budget through their impact on radiative fluxes. We use three ensembles of simulations with the LMDZ general circulation model to investigate the radiative impacts of five species of greenhouse gases (CO2, CH4, N2O, CFC-11 and CFC-12) and sulfate aerosols for the period 1930–1989. Since our focus is on the atmospheric changes in clouds and radiation from greenhouse gases and aerosols, we prescribed sea-surface temperatures in these simulations. Besides the direct impact on radiation through the greenhouse effect and scattering of sunlight by aerosols, strong radiative impacts of both perturbations through changes in cloudiness are analysed. The increase in greenhouse gas concentration leads to a reduction of clouds at all atmospheric levels, thus decreasing the total greenhouse effect in the longwave spectrum and increasing absorption of solar radiation by reduction of cloud albedo. Increasing anthropogenic aerosol burden results in a decrease in high-level cloud cover through a cooling of the atmosphere, and an increase in the low-level cloud cover through the second aerosol indirect effect. The trend in low-level cloud lifetime due to aerosols is quantified to 0.5 min day−1 decade−1 for the simulation period. The different changes in high (decrease) and low-level (increase) cloudiness due to the response of cloud processes to aerosols impact shortwave radiation in a contrariwise manner, and the net effect is slightly positive. The total aerosol effect including the aerosol direct and first indirect effects remains strongly negative. More... »
PAGES779-789
http://scigraph.springernature.com/pub.10.1007/s00382-004-0475-0
DOIhttp://dx.doi.org/10.1007/s00382-004-0475-0
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1034321830
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Earth Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atmospheric Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Oceanography",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Geography and Environmental Geoscience",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique, IPSL/C.N.R.S., Paris, France",
"id": "http://www.grid.ac/institutes/grid.463916.f",
"name": [
"Laboratoire de M\u00e9t\u00e9orologie Dynamique, IPSL/C.N.R.S., Paris, France"
],
"type": "Organization"
},
"familyName": "Quaas",
"givenName": "Johannes",
"id": "sg:person.0723513371.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723513371.80"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire d\u2019Optique Atmosph\u00e9rique, Unversit\u00e9 de Lille/C.N.R.S., Villeneuve d\u2019Ascq, France",
"id": "http://www.grid.ac/institutes/grid.497265.b",
"name": [
"Laboratoire d\u2019Optique Atmosph\u00e9rique, Unversit\u00e9 de Lille/C.N.R.S., Villeneuve d\u2019Ascq, France"
],
"type": "Organization"
},
"familyName": "Boucher",
"givenName": "Olivier",
"id": "sg:person.01301253676.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301253676.11"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique, IPSL/C.N.R.S., Paris, France",
"id": "http://www.grid.ac/institutes/grid.463916.f",
"name": [
"Laboratoire de M\u00e9t\u00e9orologie Dynamique, IPSL/C.N.R.S., Paris, France"
],
"type": "Organization"
},
"familyName": "Dufresne",
"givenName": "Jean-Louis",
"id": "sg:person.01075255253.14",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075255253.14"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique, IPSL/C.N.R.S., Paris, France",
"id": "http://www.grid.ac/institutes/grid.463916.f",
"name": [
"Laboratoire de M\u00e9t\u00e9orologie Dynamique, IPSL/C.N.R.S., Paris, France"
],
"type": "Organization"
},
"familyName": "Le Treut",
"givenName": "Herv\u00e9",
"id": "sg:person.01077116450.69",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077116450.69"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/339365a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038295809",
"https://doi.org/10.1038/339365a0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s003820100185",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043744883",
"https://doi.org/10.1007/s003820100185"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00251808",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042853097",
"https://doi.org/10.1007/bf00251808"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/340437a0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043969196",
"https://doi.org/10.1038/340437a0"
],
"type": "CreativeWork"
}
],
"datePublished": "2004-11-09",
"datePublishedReg": "2004-11-09",
"description": "Among anthropogenic perturbations of the Earth\u2019s atmosphere, greenhouse gases and aerosols are considered to have a major impact on the energy budget through their impact on radiative fluxes. We use three ensembles of simulations with the LMDZ general circulation model to investigate the radiative impacts of five species of greenhouse gases (CO2, CH4, N2O, CFC-11 and CFC-12) and sulfate aerosols for the period 1930\u20131989. Since our focus is on the atmospheric changes in clouds and radiation from greenhouse gases and aerosols, we prescribed sea-surface temperatures in these simulations. Besides the direct impact on radiation through the greenhouse effect and scattering of sunlight by aerosols, strong radiative impacts of both perturbations through changes in cloudiness are analysed. The increase in greenhouse gas concentration leads to a reduction of clouds at all atmospheric levels, thus decreasing the total greenhouse effect in the longwave spectrum and increasing absorption of solar radiation by reduction of cloud albedo. Increasing anthropogenic aerosol burden results in a decrease in high-level cloud cover through a cooling of the atmosphere, and an increase in the low-level cloud cover through the second aerosol indirect effect. The trend in low-level cloud lifetime due to aerosols is quantified to 0.5\u00a0min\u00a0day\u22121\u00a0decade\u22121 for the simulation period. The different changes in high (decrease) and low-level (increase) cloudiness due to the response of cloud processes to aerosols impact shortwave radiation in a contrariwise manner, and the net effect is slightly positive. The total aerosol effect including the aerosol direct and first indirect effects remains strongly negative.",
"genre": "article",
"id": "sg:pub.10.1007/s00382-004-0475-0",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1049631",
"issn": [
"0930-7575",
"1432-0894"
],
"name": "Climate Dynamics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "7-8",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "23"
}
],
"keywords": [
"greenhouse gases",
"radiative impact",
"cloud cover",
"high-level cloud cover",
"LMDZ general circulation model",
"low-level cloud cover",
"greenhouse effect",
"second aerosol indirect effect",
"atmospheric GCM simulations",
"total aerosol effect",
"sea surface temperature",
"strong radiative impact",
"general circulation model",
"aerosol indirect effect",
"first indirect effect",
"greenhouse gas concentrations",
"low-level cloudiness",
"ensemble of simulations",
"reduction of clouds",
"scattering of sunlight",
"total greenhouse effect",
"GCM simulations",
"circulation model",
"aerosol effect",
"cloud albedo",
"cloud processes",
"shortwave radiation",
"radiative fluxes",
"longwave spectrum",
"atmospheric changes",
"cloud lifetime",
"anthropogenic perturbations",
"Earth's atmosphere",
"atmospheric levels",
"simulation period",
"aerosols",
"energy budget",
"gas concentration",
"solar radiation",
"cloudiness",
"atmosphere",
"cloud",
"cover",
"gases",
"net effect",
"indirect effects",
"albedo",
"major impact",
"budget",
"flux",
"cooling",
"direct impact",
"radiation",
"period",
"impact",
"perturbations",
"changes",
"different changes",
"ensemble",
"simulations",
"trends",
"temperature",
"sunlight",
"concentration",
"increase",
"model",
"process",
"decrease",
"burden results",
"reduction",
"effect",
"results",
"species",
"spectra",
"absorption",
"response",
"levels",
"scattering",
"lifetime",
"focus",
"min",
"manner"
],
"name": "Impacts of greenhouse gases and aerosol direct and indirect effects on clouds and radiation in atmospheric GCM simulations of the 1930\u20131989 period",
"pagination": "779-789",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1034321830"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00382-004-0475-0"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00382-004-0475-0",
"https://app.dimensions.ai/details/publication/pub.1034321830"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:50",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_382.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00382-004-0475-0"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-004-0475-0'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-004-0475-0'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-004-0475-0'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-004-0475-0'
This table displays all metadata directly associated to this object as RDF triples.
188 TRIPLES
22 PREDICATES
113 URIs
99 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00382-004-0475-0 | schema:about | anzsrc-for:04 |
2 | ″ | ″ | anzsrc-for:0401 |
3 | ″ | ″ | anzsrc-for:0405 |
4 | ″ | ″ | anzsrc-for:0406 |
5 | ″ | schema:author | Neff4b64ec9c94d10bceb8217fe9a6fc2 |
6 | ″ | schema:citation | sg:pub.10.1007/bf00251808 |
7 | ″ | ″ | sg:pub.10.1007/s003820100185 |
8 | ″ | ″ | sg:pub.10.1038/339365a0 |
9 | ″ | ″ | sg:pub.10.1038/340437a0 |
10 | ″ | schema:datePublished | 2004-11-09 |
11 | ″ | schema:datePublishedReg | 2004-11-09 |
12 | ″ | schema:description | Among anthropogenic perturbations of the Earth’s atmosphere, greenhouse gases and aerosols are considered to have a major impact on the energy budget through their impact on radiative fluxes. We use three ensembles of simulations with the LMDZ general circulation model to investigate the radiative impacts of five species of greenhouse gases (CO2, CH4, N2O, CFC-11 and CFC-12) and sulfate aerosols for the period 1930–1989. Since our focus is on the atmospheric changes in clouds and radiation from greenhouse gases and aerosols, we prescribed sea-surface temperatures in these simulations. Besides the direct impact on radiation through the greenhouse effect and scattering of sunlight by aerosols, strong radiative impacts of both perturbations through changes in cloudiness are analysed. The increase in greenhouse gas concentration leads to a reduction of clouds at all atmospheric levels, thus decreasing the total greenhouse effect in the longwave spectrum and increasing absorption of solar radiation by reduction of cloud albedo. Increasing anthropogenic aerosol burden results in a decrease in high-level cloud cover through a cooling of the atmosphere, and an increase in the low-level cloud cover through the second aerosol indirect effect. The trend in low-level cloud lifetime due to aerosols is quantified to 0.5 min day−1 decade−1 for the simulation period. The different changes in high (decrease) and low-level (increase) cloudiness due to the response of cloud processes to aerosols impact shortwave radiation in a contrariwise manner, and the net effect is slightly positive. The total aerosol effect including the aerosol direct and first indirect effects remains strongly negative. |
13 | ″ | schema:genre | article |
14 | ″ | schema:inLanguage | en |
15 | ″ | schema:isAccessibleForFree | true |
16 | ″ | schema:isPartOf | N78b906ad959d484cb574c6062dbe2a0d |
17 | ″ | ″ | Nc5a2807a52784c5faf9e3f10e33998d4 |
18 | ″ | ″ | sg:journal.1049631 |
19 | ″ | schema:keywords | Earth's atmosphere |
20 | ″ | ″ | GCM simulations |
21 | ″ | ″ | LMDZ general circulation model |
22 | ″ | ″ | absorption |
23 | ″ | ″ | aerosol effect |
24 | ″ | ″ | aerosol indirect effect |
25 | ″ | ″ | aerosols |
26 | ″ | ″ | albedo |
27 | ″ | ″ | anthropogenic perturbations |
28 | ″ | ″ | atmosphere |
29 | ″ | ″ | atmospheric GCM simulations |
30 | ″ | ″ | atmospheric changes |
31 | ″ | ″ | atmospheric levels |
32 | ″ | ″ | budget |
33 | ″ | ″ | burden results |
34 | ″ | ″ | changes |
35 | ″ | ″ | circulation model |
36 | ″ | ″ | cloud |
37 | ″ | ″ | cloud albedo |
38 | ″ | ″ | cloud cover |
39 | ″ | ″ | cloud lifetime |
40 | ″ | ″ | cloud processes |
41 | ″ | ″ | cloudiness |
42 | ″ | ″ | concentration |
43 | ″ | ″ | cooling |
44 | ″ | ″ | cover |
45 | ″ | ″ | decrease |
46 | ″ | ″ | different changes |
47 | ″ | ″ | direct impact |
48 | ″ | ″ | effect |
49 | ″ | ″ | energy budget |
50 | ″ | ″ | ensemble |
51 | ″ | ″ | ensemble of simulations |
52 | ″ | ″ | first indirect effect |
53 | ″ | ″ | flux |
54 | ″ | ″ | focus |
55 | ″ | ″ | gas concentration |
56 | ″ | ″ | gases |
57 | ″ | ″ | general circulation model |
58 | ″ | ″ | greenhouse effect |
59 | ″ | ″ | greenhouse gas concentrations |
60 | ″ | ″ | greenhouse gases |
61 | ″ | ″ | high-level cloud cover |
62 | ″ | ″ | impact |
63 | ″ | ″ | increase |
64 | ″ | ″ | indirect effects |
65 | ″ | ″ | levels |
66 | ″ | ″ | lifetime |
67 | ″ | ″ | longwave spectrum |
68 | ″ | ″ | low-level cloud cover |
69 | ″ | ″ | low-level cloudiness |
70 | ″ | ″ | major impact |
71 | ″ | ″ | manner |
72 | ″ | ″ | min |
73 | ″ | ″ | model |
74 | ″ | ″ | net effect |
75 | ″ | ″ | period |
76 | ″ | ″ | perturbations |
77 | ″ | ″ | process |
78 | ″ | ″ | radiation |
79 | ″ | ″ | radiative fluxes |
80 | ″ | ″ | radiative impact |
81 | ″ | ″ | reduction |
82 | ″ | ″ | reduction of clouds |
83 | ″ | ″ | response |
84 | ″ | ″ | results |
85 | ″ | ″ | scattering |
86 | ″ | ″ | scattering of sunlight |
87 | ″ | ″ | sea surface temperature |
88 | ″ | ″ | second aerosol indirect effect |
89 | ″ | ″ | shortwave radiation |
90 | ″ | ″ | simulation period |
91 | ″ | ″ | simulations |
92 | ″ | ″ | solar radiation |
93 | ″ | ″ | species |
94 | ″ | ″ | spectra |
95 | ″ | ″ | strong radiative impact |
96 | ″ | ″ | sunlight |
97 | ″ | ″ | temperature |
98 | ″ | ″ | total aerosol effect |
99 | ″ | ″ | total greenhouse effect |
100 | ″ | ″ | trends |
101 | ″ | schema:name | Impacts of greenhouse gases and aerosol direct and indirect effects on clouds and radiation in atmospheric GCM simulations of the 1930–1989 period |
102 | ″ | schema:pagination | 779-789 |
103 | ″ | schema:productId | N0a75107ec080414b9739d59da9b4d3ab |
104 | ″ | ″ | N76859f4334924542b4613413e8003a8a |
105 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1034321830 |
106 | ″ | ″ | https://doi.org/10.1007/s00382-004-0475-0 |
107 | ″ | schema:sdDatePublished | 2022-05-10T09:50 |
108 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
109 | ″ | schema:sdPublisher | N8aabfa52ad8147b8b96b319ee7068cb7 |
110 | ″ | schema:url | https://doi.org/10.1007/s00382-004-0475-0 |
111 | ″ | sgo:license | sg:explorer/license/ |
112 | ″ | sgo:sdDataset | articles |
113 | ″ | rdf:type | schema:ScholarlyArticle |
114 | N0a75107ec080414b9739d59da9b4d3ab | schema:name | dimensions_id |
115 | ″ | schema:value | pub.1034321830 |
116 | ″ | rdf:type | schema:PropertyValue |
117 | N2b0cb2f3de7c4b179c8584b400f5b03a | rdf:first | sg:person.01077116450.69 |
118 | ″ | rdf:rest | rdf:nil |
119 | N3fef187dbe19403ca4e84d55e7fd087d | rdf:first | sg:person.01075255253.14 |
120 | ″ | rdf:rest | N2b0cb2f3de7c4b179c8584b400f5b03a |
121 | N76859f4334924542b4613413e8003a8a | schema:name | doi |
122 | ″ | schema:value | 10.1007/s00382-004-0475-0 |
123 | ″ | rdf:type | schema:PropertyValue |
124 | N78b906ad959d484cb574c6062dbe2a0d | schema:volumeNumber | 23 |
125 | ″ | rdf:type | schema:PublicationVolume |
126 | N8aabfa52ad8147b8b96b319ee7068cb7 | schema:name | Springer Nature - SN SciGraph project |
127 | ″ | rdf:type | schema:Organization |
128 | Nc5a2807a52784c5faf9e3f10e33998d4 | schema:issueNumber | 7-8 |
129 | ″ | rdf:type | schema:PublicationIssue |
130 | Neff4b64ec9c94d10bceb8217fe9a6fc2 | rdf:first | sg:person.0723513371.80 |
131 | ″ | rdf:rest | Nf54584ecb2944e529232d66c2a61c265 |
132 | Nf54584ecb2944e529232d66c2a61c265 | rdf:first | sg:person.01301253676.11 |
133 | ″ | rdf:rest | N3fef187dbe19403ca4e84d55e7fd087d |
134 | anzsrc-for:04 | schema:inDefinedTermSet | anzsrc-for: |
135 | ″ | schema:name | Earth Sciences |
136 | ″ | rdf:type | schema:DefinedTerm |
137 | anzsrc-for:0401 | schema:inDefinedTermSet | anzsrc-for: |
138 | ″ | schema:name | Atmospheric Sciences |
139 | ″ | rdf:type | schema:DefinedTerm |
140 | anzsrc-for:0405 | schema:inDefinedTermSet | anzsrc-for: |
141 | ″ | schema:name | Oceanography |
142 | ″ | rdf:type | schema:DefinedTerm |
143 | anzsrc-for:0406 | schema:inDefinedTermSet | anzsrc-for: |
144 | ″ | schema:name | Physical Geography and Environmental Geoscience |
145 | ″ | rdf:type | schema:DefinedTerm |
146 | sg:journal.1049631 | schema:issn | 0930-7575 |
147 | ″ | ″ | 1432-0894 |
148 | ″ | schema:name | Climate Dynamics |
149 | ″ | schema:publisher | Springer Nature |
150 | ″ | rdf:type | schema:Periodical |
151 | sg:person.01075255253.14 | schema:affiliation | grid-institutes:grid.463916.f |
152 | ″ | schema:familyName | Dufresne |
153 | ″ | schema:givenName | Jean-Louis |
154 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075255253.14 |
155 | ″ | rdf:type | schema:Person |
156 | sg:person.01077116450.69 | schema:affiliation | grid-institutes:grid.463916.f |
157 | ″ | schema:familyName | Le Treut |
158 | ″ | schema:givenName | Hervé |
159 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077116450.69 |
160 | ″ | rdf:type | schema:Person |
161 | sg:person.01301253676.11 | schema:affiliation | grid-institutes:grid.497265.b |
162 | ″ | schema:familyName | Boucher |
163 | ″ | schema:givenName | Olivier |
164 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301253676.11 |
165 | ″ | rdf:type | schema:Person |
166 | sg:person.0723513371.80 | schema:affiliation | grid-institutes:grid.463916.f |
167 | ″ | schema:familyName | Quaas |
168 | ″ | schema:givenName | Johannes |
169 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723513371.80 |
170 | ″ | rdf:type | schema:Person |
171 | sg:pub.10.1007/bf00251808 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1042853097 |
172 | ″ | ″ | https://doi.org/10.1007/bf00251808 |
173 | ″ | rdf:type | schema:CreativeWork |
174 | sg:pub.10.1007/s003820100185 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1043744883 |
175 | ″ | ″ | https://doi.org/10.1007/s003820100185 |
176 | ″ | rdf:type | schema:CreativeWork |
177 | sg:pub.10.1038/339365a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1038295809 |
178 | ″ | ″ | https://doi.org/10.1038/339365a0 |
179 | ″ | rdf:type | schema:CreativeWork |
180 | sg:pub.10.1038/340437a0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1043969196 |
181 | ″ | ″ | https://doi.org/10.1038/340437a0 |
182 | ″ | rdf:type | schema:CreativeWork |
183 | grid-institutes:grid.463916.f | schema:alternateName | Laboratoire de Météorologie Dynamique, IPSL/C.N.R.S., Paris, France |
184 | ″ | schema:name | Laboratoire de Météorologie Dynamique, IPSL/C.N.R.S., Paris, France |
185 | ″ | rdf:type | schema:Organization |
186 | grid-institutes:grid.497265.b | schema:alternateName | Laboratoire d’Optique Atmosphérique, Unversité de Lille/C.N.R.S., Villeneuve d’Ascq, France |
187 | ″ | schema:name | Laboratoire d’Optique Atmosphérique, Unversité de Lille/C.N.R.S., Villeneuve d’Ascq, France |
188 | ″ | rdf:type | schema:Organization |