Response of the Indian summer monsoon circulation and rainfall to seasonal snow depth anomaly over Eurasia View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-11-19

AUTHORS

S. K. Dash, G. P. Singh, M. S. Shekhar, A. D. Vernekar

ABSTRACT

Several observational and modeling studies indicate that the Indian summer monsoon rainfall (ISMR) is inversely related to the Eurasian snow extent and depth. The other two important surface boundary conditions which influence the ISMR are the Pacific sea surface temperature (SST) to a large extent and the Indian Ocean SST to some extent. In the present study, observed Soviet snow depth data and Indian rainfall data for the period 1951–1994 have been statistically analyzed and results show that 57% of heavy snow events and 24% of light snow events over west Eurasia are followed by deficient and excess ISMR respectively. Out of all the extreme monsoon years, care has been taken to identify those when Eurasian snow was the most dominant surface forcing to influence ISMR. During the years of high(low) Eurasian snow amounts in spring/winter followed by deficient(excess) ISMR, atmospheric fields such as temperature, wind, geopotential height, velocity potential and stream function based on NCEP/NCAR reanalyses have been examined in detail to study the influence of Eurasian snow on the midlatitude circulation regime and hence on the monsoon circulation. Results show that because of the west Eurasian snow anomalies, the midlatitude circulations in winter through spring show significant changes in the upper and lower level wind, geopotential height, velocity potential and stream function fields. Such changes in the large-scale circulation pattern may be interpreted as precursors to weak/strong monsoon circulation and deficient/excess ISMR. The upper level velocity potential difference fields between the high and low snow years indicate that with the advent of spring, the winter anomalous convergence over the Indian region gradually becomes weaker and gives way to anomalous divergence that persists through the summer monsoon season. Also the upper level anomalous divergence centre shifts from over the Northern Hemisphere and equator to the Southern Hemisphere over the Indian Ocean and Australia. More... »

PAGES

1-10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-004-0448-3

DOI

http://dx.doi.org/10.1007/s00382-004-0448-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024296544


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centre for Atmospheric Sciences, IIT Delhi Hauz Khas, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417967.a", 
          "name": [
            "Centre for Atmospheric Sciences, IIT Delhi Hauz Khas, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dash", 
        "givenName": "S. K.", 
        "id": "sg:person.011013255333.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011013255333.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Atmospheric Sciences, IIT Delhi Hauz Khas, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417967.a", 
          "name": [
            "Centre for Atmospheric Sciences, IIT Delhi Hauz Khas, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "G. P.", 
        "id": "sg:person.014720472657.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014720472657.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Atmospheric Sciences, IIT Delhi Hauz Khas, New Delhi, India", 
          "id": "http://www.grid.ac/institutes/grid.417967.a", 
          "name": [
            "Centre for Atmospheric Sciences, IIT Delhi Hauz Khas, New Delhi, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shekhar", 
        "givenName": "M. S.", 
        "id": "sg:person.016670040734.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016670040734.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Meteorology, University of Maryland College Park, Maryland, USA", 
          "id": "http://www.grid.ac/institutes/grid.164295.d", 
          "name": [
            "Department of Meteorology, University of Maryland College Park, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vernekar", 
        "givenName": "A. D.", 
        "id": "sg:person.0604322544.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604322544.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00703-003-0016-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037665423", 
          "https://doi.org/10.1007/s00703-003-0016-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044367634", 
          "https://doi.org/10.1007/s003820050294"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-11-19", 
    "datePublishedReg": "2004-11-19", 
    "description": "Abstract  Several observational and modeling studies indicate that the Indian summer monsoon rainfall (ISMR) is inversely related to the Eurasian snow extent and depth. The other two important surface boundary conditions which influence the ISMR are the Pacific sea surface temperature (SST) to a large extent and the Indian Ocean SST to some extent. In the present study, observed Soviet snow depth data and Indian rainfall data for the period 1951\u20131994 have been statistically analyzed and results show that 57% of heavy snow events and 24% of light snow events over west Eurasia are followed by deficient and excess ISMR respectively. Out of all the extreme monsoon years, care has been taken to identify those when Eurasian snow was the most dominant surface forcing to influence ISMR. During the years of high(low) Eurasian snow amounts in spring/winter followed by deficient(excess) ISMR, atmospheric fields such as temperature, wind, geopotential height, velocity potential and stream function based on NCEP/NCAR reanalyses have been examined in detail to study the influence of Eurasian snow on the midlatitude circulation regime and hence on the monsoon circulation. Results show that because of the west Eurasian snow anomalies, the midlatitude circulations in winter through spring show significant changes in the upper and lower level wind, geopotential height, velocity potential and stream function fields. Such changes in the large-scale circulation pattern may be interpreted as precursors to weak/strong monsoon circulation and deficient/excess ISMR. The upper level velocity potential difference fields between the high and low snow years indicate that with the advent of spring, the winter anomalous convergence over the Indian region gradually becomes weaker and gives way to anomalous divergence that persists through the summer monsoon season. Also the upper level anomalous divergence centre shifts from over the Northern Hemisphere and equator to the Southern Hemisphere over the Indian Ocean and Australia.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-004-0448-3", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "keywords": [
      "Indian summer monsoon rainfall", 
      "sea surface temperature", 
      "excess Indian Summer Monsoon Rainfall", 
      "Eurasian snow", 
      "monsoon circulation", 
      "geopotential height", 
      "snow events", 
      "Indian Ocean sea surface temperature", 
      "Pacific sea surface temperature", 
      "Ocean sea surface temperature", 
      "Indian summer monsoon circulation", 
      "NCEP/NCAR reanalyses", 
      "large-scale circulation patterns", 
      "Eurasian snow extent", 
      "summer monsoon circulation", 
      "extreme monsoon years", 
      "snow depth anomalies", 
      "summer monsoon rainfall", 
      "Eurasian snow anomalies", 
      "stronger monsoon circulation", 
      "summer monsoon season", 
      "low-level winds", 
      "Indian rainfall data", 
      "heavy snow events", 
      "low snow years", 
      "snow depth data", 
      "spring/winter", 
      "stream function fields", 
      "surface boundary conditions", 
      "monsoon rainfall", 
      "monsoon years", 
      "snow anomalies", 
      "midlatitude circulation", 
      "anomalous convergence", 
      "depth anomalies", 
      "circulation regimes", 
      "atmospheric fields", 
      "circulation patterns", 
      "rainfall data", 
      "Indian Ocean", 
      "snow extent", 
      "monsoon season", 
      "level winds", 
      "Indian region", 
      "Northern Hemisphere", 
      "anomalous divergence", 
      "surface temperature", 
      "snow years", 
      "advent of spring", 
      "difference field", 
      "snow", 
      "circulation", 
      "rainfall", 
      "depth data", 
      "Eurasia", 
      "velocity potential", 
      "wind", 
      "winter", 
      "West Eurasia", 
      "anomalies", 
      "spring", 
      "dominant surface", 
      "reanalyses", 
      "Ocean", 
      "stream function", 
      "events", 
      "such changes", 
      "equator", 
      "hemisphere", 
      "Southern", 
      "depth", 
      "boundary conditions", 
      "large extent", 
      "season", 
      "height", 
      "extent", 
      "temperature", 
      "Australia", 
      "center shift", 
      "changes", 
      "regime", 
      "region", 
      "data", 
      "field", 
      "significant changes", 
      "years", 
      "surface", 
      "patterns", 
      "shift", 
      "convergence", 
      "divergence", 
      "conditions", 
      "influence", 
      "results", 
      "potential", 
      "study", 
      "detail", 
      "precursors", 
      "response", 
      "present study", 
      "advent", 
      "function fields", 
      "way", 
      "function", 
      "care"
    ], 
    "name": "Response of the Indian summer monsoon circulation and rainfall to seasonal snow depth anomaly over Eurasia", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024296544"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-004-0448-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-004-0448-3", 
      "https://app.dimensions.ai/details/publication/pub.1024296544"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_383.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-004-0448-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-004-0448-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-004-0448-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-004-0448-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-004-0448-3'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      21 PREDICATES      131 URIs      121 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-004-0448-3 schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author N1828c081c80d4703b3749e777240797a
4 schema:citation sg:pub.10.1007/s003820050294
5 sg:pub.10.1007/s00703-003-0016-0
6 schema:datePublished 2004-11-19
7 schema:datePublishedReg 2004-11-19
8 schema:description Abstract Several observational and modeling studies indicate that the Indian summer monsoon rainfall (ISMR) is inversely related to the Eurasian snow extent and depth. The other two important surface boundary conditions which influence the ISMR are the Pacific sea surface temperature (SST) to a large extent and the Indian Ocean SST to some extent. In the present study, observed Soviet snow depth data and Indian rainfall data for the period 1951–1994 have been statistically analyzed and results show that 57% of heavy snow events and 24% of light snow events over west Eurasia are followed by deficient and excess ISMR respectively. Out of all the extreme monsoon years, care has been taken to identify those when Eurasian snow was the most dominant surface forcing to influence ISMR. During the years of high(low) Eurasian snow amounts in spring/winter followed by deficient(excess) ISMR, atmospheric fields such as temperature, wind, geopotential height, velocity potential and stream function based on NCEP/NCAR reanalyses have been examined in detail to study the influence of Eurasian snow on the midlatitude circulation regime and hence on the monsoon circulation. Results show that because of the west Eurasian snow anomalies, the midlatitude circulations in winter through spring show significant changes in the upper and lower level wind, geopotential height, velocity potential and stream function fields. Such changes in the large-scale circulation pattern may be interpreted as precursors to weak/strong monsoon circulation and deficient/excess ISMR. The upper level velocity potential difference fields between the high and low snow years indicate that with the advent of spring, the winter anomalous convergence over the Indian region gradually becomes weaker and gives way to anomalous divergence that persists through the summer monsoon season. Also the upper level anomalous divergence centre shifts from over the Northern Hemisphere and equator to the Southern Hemisphere over the Indian Ocean and Australia.
9 schema:genre article
10 schema:isAccessibleForFree false
11 schema:isPartOf N4f606be61ec34bd19c0551e72336daf8
12 N7feb7d38752f4c17af28e201f43447ec
13 sg:journal.1049631
14 schema:keywords Australia
15 Eurasia
16 Eurasian snow
17 Eurasian snow anomalies
18 Eurasian snow extent
19 Indian Ocean
20 Indian Ocean sea surface temperature
21 Indian rainfall data
22 Indian region
23 Indian summer monsoon circulation
24 Indian summer monsoon rainfall
25 NCEP/NCAR reanalyses
26 Northern Hemisphere
27 Ocean
28 Ocean sea surface temperature
29 Pacific sea surface temperature
30 Southern
31 West Eurasia
32 advent
33 advent of spring
34 anomalies
35 anomalous convergence
36 anomalous divergence
37 atmospheric fields
38 boundary conditions
39 care
40 center shift
41 changes
42 circulation
43 circulation patterns
44 circulation regimes
45 conditions
46 convergence
47 data
48 depth
49 depth anomalies
50 depth data
51 detail
52 difference field
53 divergence
54 dominant surface
55 equator
56 events
57 excess Indian Summer Monsoon Rainfall
58 extent
59 extreme monsoon years
60 field
61 function
62 function fields
63 geopotential height
64 heavy snow events
65 height
66 hemisphere
67 influence
68 large extent
69 large-scale circulation patterns
70 level winds
71 low snow years
72 low-level winds
73 midlatitude circulation
74 monsoon circulation
75 monsoon rainfall
76 monsoon season
77 monsoon years
78 patterns
79 potential
80 precursors
81 present study
82 rainfall
83 rainfall data
84 reanalyses
85 regime
86 region
87 response
88 results
89 sea surface temperature
90 season
91 shift
92 significant changes
93 snow
94 snow anomalies
95 snow depth anomalies
96 snow depth data
97 snow events
98 snow extent
99 snow years
100 spring
101 spring/winter
102 stream function
103 stream function fields
104 stronger monsoon circulation
105 study
106 such changes
107 summer monsoon circulation
108 summer monsoon rainfall
109 summer monsoon season
110 surface
111 surface boundary conditions
112 surface temperature
113 temperature
114 velocity potential
115 way
116 wind
117 winter
118 years
119 schema:name Response of the Indian summer monsoon circulation and rainfall to seasonal snow depth anomaly over Eurasia
120 schema:pagination 1-10
121 schema:productId N2ba6c1ea26584f1c91e3b20e0a3363a1
122 N5dd5612c06f541c6be96f6e14260a1aa
123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024296544
124 https://doi.org/10.1007/s00382-004-0448-3
125 schema:sdDatePublished 2022-09-02T15:50
126 schema:sdLicense https://scigraph.springernature.com/explorer/license/
127 schema:sdPublisher N6d5ab1dcd16a47ed9a070e5d78503ce9
128 schema:url https://doi.org/10.1007/s00382-004-0448-3
129 sgo:license sg:explorer/license/
130 sgo:sdDataset articles
131 rdf:type schema:ScholarlyArticle
132 N02ebe3ff66d94cc58fdac5f09b88705e rdf:first sg:person.0604322544.53
133 rdf:rest rdf:nil
134 N1828c081c80d4703b3749e777240797a rdf:first sg:person.011013255333.31
135 rdf:rest N94132cccaf374d958fc9074d3ec8abc7
136 N2ba6c1ea26584f1c91e3b20e0a3363a1 schema:name dimensions_id
137 schema:value pub.1024296544
138 rdf:type schema:PropertyValue
139 N49d6b83a23b64edf8fee581f09a1ba3a rdf:first sg:person.016670040734.70
140 rdf:rest N02ebe3ff66d94cc58fdac5f09b88705e
141 N4f606be61ec34bd19c0551e72336daf8 schema:volumeNumber 24
142 rdf:type schema:PublicationVolume
143 N5dd5612c06f541c6be96f6e14260a1aa schema:name doi
144 schema:value 10.1007/s00382-004-0448-3
145 rdf:type schema:PropertyValue
146 N6d5ab1dcd16a47ed9a070e5d78503ce9 schema:name Springer Nature - SN SciGraph project
147 rdf:type schema:Organization
148 N7feb7d38752f4c17af28e201f43447ec schema:issueNumber 1
149 rdf:type schema:PublicationIssue
150 N94132cccaf374d958fc9074d3ec8abc7 rdf:first sg:person.014720472657.71
151 rdf:rest N49d6b83a23b64edf8fee581f09a1ba3a
152 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
153 schema:name Earth Sciences
154 rdf:type schema:DefinedTerm
155 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
156 schema:name Oceanography
157 rdf:type schema:DefinedTerm
158 sg:journal.1049631 schema:issn 0930-7575
159 1432-0894
160 schema:name Climate Dynamics
161 schema:publisher Springer Nature
162 rdf:type schema:Periodical
163 sg:person.011013255333.31 schema:affiliation grid-institutes:grid.417967.a
164 schema:familyName Dash
165 schema:givenName S. K.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011013255333.31
167 rdf:type schema:Person
168 sg:person.014720472657.71 schema:affiliation grid-institutes:grid.417967.a
169 schema:familyName Singh
170 schema:givenName G. P.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014720472657.71
172 rdf:type schema:Person
173 sg:person.016670040734.70 schema:affiliation grid-institutes:grid.417967.a
174 schema:familyName Shekhar
175 schema:givenName M. S.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016670040734.70
177 rdf:type schema:Person
178 sg:person.0604322544.53 schema:affiliation grid-institutes:grid.164295.d
179 schema:familyName Vernekar
180 schema:givenName A. D.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604322544.53
182 rdf:type schema:Person
183 sg:pub.10.1007/s003820050294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044367634
184 https://doi.org/10.1007/s003820050294
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s00703-003-0016-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037665423
187 https://doi.org/10.1007/s00703-003-0016-0
188 rdf:type schema:CreativeWork
189 grid-institutes:grid.164295.d schema:alternateName Department of Meteorology, University of Maryland College Park, Maryland, USA
190 schema:name Department of Meteorology, University of Maryland College Park, Maryland, USA
191 rdf:type schema:Organization
192 grid-institutes:grid.417967.a schema:alternateName Centre for Atmospheric Sciences, IIT Delhi Hauz Khas, New Delhi, India
193 schema:name Centre for Atmospheric Sciences, IIT Delhi Hauz Khas, New Delhi, India
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...