Climate impact of the European winter blocking episodes from the NCEP/NCAR Reanalyses View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-05-29

AUTHORS

R. M. Trigo, I. F. Trigo, C. C. DaCamara, T. J. Osborn

ABSTRACT

A comprehensive multivariable characterisation of the climatic impacts of winter blocking and strong zonal-flow (non-blocking) episodes over the Euro-Atlantic sector is presented here, using a 40-year (1958–97) consistent dataset from NCEP/NCAR. Anomaly fields of surface or low troposphere climate variables are then interpreted based on large-scale physical mechanisms, namely, the anomalous mean flow (characterised by the 500 hPa geopotential height and the surface wind) and the anomalous eddy activity (characterised by the surface vorticity and cyclonic activity). It is shown that the lower troposphere (850 hPa) temperature patterns are mainly controlled by the advection of heat by the anomalous mean flow. However, at the surface level, the anomaly patterns obtained for maximum and minimum temperatures present important asymmetries, associated with a different control mechanism, namely the modulation of shortwave and longwave radiation by cloud cover variations. It is shown that blocking and non-blocking episodes are typically associated with important meridional shifts in the location of maximum activity of transient eddies. The influence of persistent anomaly events in precipitable water is strongly related to the corresponding anomaly fields of lower troposphere temperature. The precipitation rate, however, appears to be essentially controlled by the surface vorticity field and preferred locations of associated cyclones. More... »

PAGES

17-28

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-004-0410-4

DOI

http://dx.doi.org/10.1007/s00382-004-0410-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019355082


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Departamento de Eng. Civil da Universidade Lus\u00f3fona, Lisbon, Portugal", 
          "id": "http://www.grid.ac/institutes/grid.164242.7", 
          "name": [
            "Centro de Geof\u00edsica da Universidade de Lisboa, Departamento de F\u00edsica, Faculdade de Ci\u00e8ncias Campo Grande, Ed C8, Piso 6, 1749-016, Lisbon, Portugal", 
            "Departamento de Eng. Civil da Universidade Lus\u00f3fona, Lisbon, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trigo", 
        "givenName": "R. M.", 
        "id": "sg:person.01143517066.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143517066.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto de Meteorologia, Lisbon, Portugal", 
          "id": "http://www.grid.ac/institutes/grid.420904.b", 
          "name": [
            "Centro de Geof\u00edsica da Universidade de Lisboa, Departamento de F\u00edsica, Faculdade de Ci\u00e8ncias Campo Grande, Ed C8, Piso 6, 1749-016, Lisbon, Portugal", 
            "Instituto de Meteorologia, Lisbon, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trigo", 
        "givenName": "I. F.", 
        "id": "sg:person.015276703772.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015276703772.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto de Meteorologia, Lisbon, Portugal", 
          "id": "http://www.grid.ac/institutes/grid.420904.b", 
          "name": [
            "Centro de Geof\u00edsica da Universidade de Lisboa, Departamento de F\u00edsica, Faculdade de Ci\u00e8ncias Campo Grande, Ed C8, Piso 6, 1749-016, Lisbon, Portugal", 
            "Instituto de Meteorologia, Lisbon, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "DaCamara", 
        "givenName": "C. C.", 
        "id": "sg:person.013270537101.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013270537101.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Climatic Research Unit, University of East Anglia, Norwich, UK", 
          "id": "http://www.grid.ac/institutes/grid.8273.e", 
          "name": [
            "Climatic Research Unit, University of East Anglia, Norwich, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Osborn", 
        "givenName": "T. J.", 
        "id": "sg:person.01137064640.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137064640.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s003820000145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026257050", 
          "https://doi.org/10.1007/s003820000145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022096162", 
          "https://doi.org/10.1007/s003820050230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019899612", 
          "https://doi.org/10.1007/s003820050188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820000121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042906586", 
          "https://doi.org/10.1007/s003820000121"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-05-29", 
    "datePublishedReg": "2004-05-29", 
    "description": "Abstract A comprehensive multivariable characterisation of the climatic impacts of winter blocking and strong zonal-flow (non-blocking) episodes over the Euro-Atlantic sector is presented here, using a 40-year (1958\u201397) consistent dataset from NCEP/NCAR. Anomaly fields of surface or low troposphere climate variables are then interpreted based on large-scale physical mechanisms, namely, the anomalous mean flow (characterised by the 500\u00a0hPa geopotential height and the surface wind) and the anomalous eddy activity (characterised by the surface vorticity and cyclonic activity). It is shown that the lower troposphere (850\u00a0hPa) temperature patterns are mainly controlled by the advection of heat by the anomalous mean flow. However, at the surface level, the anomaly patterns obtained for maximum and minimum temperatures present important asymmetries, associated with a different control mechanism, namely the modulation of shortwave and longwave radiation by cloud cover variations. It is shown that blocking and non-blocking episodes are typically associated with important meridional shifts in the location of maximum activity of transient eddies. The influence of persistent anomaly events in precipitable water is strongly related to the corresponding anomaly fields of lower troposphere temperature. The precipitation rate, however, appears to be essentially controlled by the surface vorticity field and preferred locations of associated cyclones.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-004-0410-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "keywords": [
      "anomaly field", 
      "NCEP/NCAR reanalyses", 
      "lower troposphere temperature", 
      "Euro-Atlantic sector", 
      "NCEP/NCAR", 
      "advection of heat", 
      "cloud cover variations", 
      "mean flow", 
      "surface vorticity fields", 
      "meridional shift", 
      "eddy activity", 
      "troposphere temperature", 
      "anomaly patterns", 
      "precipitable water", 
      "winter blocking", 
      "longwave radiation", 
      "transient eddies", 
      "climatic impacts", 
      "precipitation rate", 
      "cover variations", 
      "European winter", 
      "climate variables", 
      "climate impacts", 
      "temperature patterns", 
      "consistent dataset", 
      "anomaly events", 
      "surface level", 
      "preferred location", 
      "physical mechanisms", 
      "vorticity field", 
      "important asymmetries", 
      "NCAR", 
      "reanalyses", 
      "cyclones", 
      "advection", 
      "eddies", 
      "episodes", 
      "winter", 
      "flow", 
      "location", 
      "water", 
      "events", 
      "patterns", 
      "variation", 
      "impact", 
      "field", 
      "temperature", 
      "surface", 
      "dataset", 
      "heat", 
      "radiation", 
      "shift", 
      "blocking", 
      "Abstract", 
      "influence", 
      "characterisation", 
      "sector", 
      "different control mechanisms", 
      "asymmetry", 
      "activity", 
      "rate", 
      "mechanism", 
      "variables", 
      "levels", 
      "maximum activity", 
      "modulation", 
      "control mechanisms"
    ], 
    "name": "Climate impact of the European winter blocking episodes from the NCEP/NCAR Reanalyses", 
    "pagination": "17-28", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019355082"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-004-0410-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-004-0410-4", 
      "https://app.dimensions.ai/details/publication/pub.1019355082"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_381.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-004-0410-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-004-0410-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-004-0410-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-004-0410-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-004-0410-4'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      22 PREDICATES      96 URIs      84 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-004-0410-4 schema:about anzsrc-for:04
2 anzsrc-for:0406
3 schema:author N85778db9ba264f20b7eca8b03d3c22dc
4 schema:citation sg:pub.10.1007/s003820000121
5 sg:pub.10.1007/s003820000145
6 sg:pub.10.1007/s003820050188
7 sg:pub.10.1007/s003820050230
8 schema:datePublished 2004-05-29
9 schema:datePublishedReg 2004-05-29
10 schema:description Abstract A comprehensive multivariable characterisation of the climatic impacts of winter blocking and strong zonal-flow (non-blocking) episodes over the Euro-Atlantic sector is presented here, using a 40-year (1958–97) consistent dataset from NCEP/NCAR. Anomaly fields of surface or low troposphere climate variables are then interpreted based on large-scale physical mechanisms, namely, the anomalous mean flow (characterised by the 500 hPa geopotential height and the surface wind) and the anomalous eddy activity (characterised by the surface vorticity and cyclonic activity). It is shown that the lower troposphere (850 hPa) temperature patterns are mainly controlled by the advection of heat by the anomalous mean flow. However, at the surface level, the anomaly patterns obtained for maximum and minimum temperatures present important asymmetries, associated with a different control mechanism, namely the modulation of shortwave and longwave radiation by cloud cover variations. It is shown that blocking and non-blocking episodes are typically associated with important meridional shifts in the location of maximum activity of transient eddies. The influence of persistent anomaly events in precipitable water is strongly related to the corresponding anomaly fields of lower troposphere temperature. The precipitation rate, however, appears to be essentially controlled by the surface vorticity field and preferred locations of associated cyclones.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf Nefd890fb3ccd4d389239594941021372
15 Nf5e6d368bea34a58b602d69bbadbc5b2
16 sg:journal.1049631
17 schema:keywords Abstract
18 Euro-Atlantic sector
19 European winter
20 NCAR
21 NCEP/NCAR
22 NCEP/NCAR reanalyses
23 activity
24 advection
25 advection of heat
26 anomaly events
27 anomaly field
28 anomaly patterns
29 asymmetry
30 blocking
31 characterisation
32 climate impacts
33 climate variables
34 climatic impacts
35 cloud cover variations
36 consistent dataset
37 control mechanisms
38 cover variations
39 cyclones
40 dataset
41 different control mechanisms
42 eddies
43 eddy activity
44 episodes
45 events
46 field
47 flow
48 heat
49 impact
50 important asymmetries
51 influence
52 levels
53 location
54 longwave radiation
55 lower troposphere temperature
56 maximum activity
57 mean flow
58 mechanism
59 meridional shift
60 modulation
61 patterns
62 physical mechanisms
63 precipitable water
64 precipitation rate
65 preferred location
66 radiation
67 rate
68 reanalyses
69 sector
70 shift
71 surface
72 surface level
73 surface vorticity fields
74 temperature
75 temperature patterns
76 transient eddies
77 troposphere temperature
78 variables
79 variation
80 vorticity field
81 water
82 winter
83 winter blocking
84 schema:name Climate impact of the European winter blocking episodes from the NCEP/NCAR Reanalyses
85 schema:pagination 17-28
86 schema:productId N0f09d2a261b34a1f960ef0eeba906e6f
87 Nda8a4f928d5f426d8651103e5546dd3a
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019355082
89 https://doi.org/10.1007/s00382-004-0410-4
90 schema:sdDatePublished 2022-06-01T22:03
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher Nf70ddf8752704b2e923e23b171020d46
93 schema:url https://doi.org/10.1007/s00382-004-0410-4
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N0f09d2a261b34a1f960ef0eeba906e6f schema:name dimensions_id
98 schema:value pub.1019355082
99 rdf:type schema:PropertyValue
100 N2f64e09f63cf4e5aa13368b268161702 rdf:first sg:person.013270537101.32
101 rdf:rest N309d5439e2874d20b41f699b2f6666c9
102 N309d5439e2874d20b41f699b2f6666c9 rdf:first sg:person.01137064640.48
103 rdf:rest rdf:nil
104 N85778db9ba264f20b7eca8b03d3c22dc rdf:first sg:person.01143517066.65
105 rdf:rest Nf4b7a0ad1eb24eee86be6146ef0310cd
106 Nda8a4f928d5f426d8651103e5546dd3a schema:name doi
107 schema:value 10.1007/s00382-004-0410-4
108 rdf:type schema:PropertyValue
109 Nefd890fb3ccd4d389239594941021372 schema:volumeNumber 23
110 rdf:type schema:PublicationVolume
111 Nf4b7a0ad1eb24eee86be6146ef0310cd rdf:first sg:person.015276703772.21
112 rdf:rest N2f64e09f63cf4e5aa13368b268161702
113 Nf5e6d368bea34a58b602d69bbadbc5b2 schema:issueNumber 1
114 rdf:type schema:PublicationIssue
115 Nf70ddf8752704b2e923e23b171020d46 schema:name Springer Nature - SN SciGraph project
116 rdf:type schema:Organization
117 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
118 schema:name Earth Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
121 schema:name Physical Geography and Environmental Geoscience
122 rdf:type schema:DefinedTerm
123 sg:journal.1049631 schema:issn 0930-7575
124 1432-0894
125 schema:name Climate Dynamics
126 schema:publisher Springer Nature
127 rdf:type schema:Periodical
128 sg:person.01137064640.48 schema:affiliation grid-institutes:grid.8273.e
129 schema:familyName Osborn
130 schema:givenName T. J.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137064640.48
132 rdf:type schema:Person
133 sg:person.01143517066.65 schema:affiliation grid-institutes:grid.164242.7
134 schema:familyName Trigo
135 schema:givenName R. M.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143517066.65
137 rdf:type schema:Person
138 sg:person.013270537101.32 schema:affiliation grid-institutes:grid.420904.b
139 schema:familyName DaCamara
140 schema:givenName C. C.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013270537101.32
142 rdf:type schema:Person
143 sg:person.015276703772.21 schema:affiliation grid-institutes:grid.420904.b
144 schema:familyName Trigo
145 schema:givenName I. F.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015276703772.21
147 rdf:type schema:Person
148 sg:pub.10.1007/s003820000121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042906586
149 https://doi.org/10.1007/s003820000121
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s003820000145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026257050
152 https://doi.org/10.1007/s003820000145
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s003820050188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019899612
155 https://doi.org/10.1007/s003820050188
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s003820050230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022096162
158 https://doi.org/10.1007/s003820050230
159 rdf:type schema:CreativeWork
160 grid-institutes:grid.164242.7 schema:alternateName Departamento de Eng. Civil da Universidade Lusófona, Lisbon, Portugal
161 schema:name Centro de Geofísica da Universidade de Lisboa, Departamento de Física, Faculdade de Cièncias Campo Grande, Ed C8, Piso 6, 1749-016, Lisbon, Portugal
162 Departamento de Eng. Civil da Universidade Lusófona, Lisbon, Portugal
163 rdf:type schema:Organization
164 grid-institutes:grid.420904.b schema:alternateName Instituto de Meteorologia, Lisbon, Portugal
165 schema:name Centro de Geofísica da Universidade de Lisboa, Departamento de Física, Faculdade de Cièncias Campo Grande, Ed C8, Piso 6, 1749-016, Lisbon, Portugal
166 Instituto de Meteorologia, Lisbon, Portugal
167 rdf:type schema:Organization
168 grid-institutes:grid.8273.e schema:alternateName Climatic Research Unit, University of East Anglia, Norwich, UK
169 schema:name Climatic Research Unit, University of East Anglia, Norwich, UK
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...