On dynamic and thermodynamic components of cloud changes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-01-27

AUTHORS

S. Bony, J.-L. Dufresne, H. Le Treut, J.-J. Morcrette, C. Senior

ABSTRACT

Clouds are sensitive to changes in both the large-scale circulation and the thermodynamic structure of the atmosphere. In the tropics, temperature changes that occur on seasonal to decadal time scales are often associated with circulation changes. Therefore, it is difficult to determine the part of cloud variations that results from a change in the dynamics from the part that may result from the temperature change itself. This study proposes a simple framework to unravel the dynamic and non-dynamic (referred to as thermodynamic) components of the cloud response to climate variations. It is used to analyze the contrasted response, to a prescribed ocean warming, of the tropically-averaged cloud radiative forcing (CRF) simulated by the ECMWF, LMD and UKMO climate models. In each model, the dynamic component largely dominates the CRF response at the regional scale, but this is the thermodynamic component that explains most of the average CRF response to the imposed perturbation. It is shown that this component strongly depends on the behaviour of the low-level clouds that occur in regions of moderate subsidence (e.g. in the trade wind regions). These clouds exhibit a moderate sensitivity to temperature changes, but this is mostly their huge statistical weight that explains their large influence on the tropical radiation budget. Several propositions are made for assessing the sensitivity of clouds to changes in temperature and in large-scale motions using satellite observations and meteorological analyses on the one hand, and mesoscale models on the other hand. More... »

PAGES

71-86

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-003-0369-6

DOI

http://dx.doi.org/10.1007/s00382-003-0369-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014795140


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique, Institut Pierre Simon Laplace (LMD/IPSL), boite 99, 4, place Jussieu, 75252, Paris cedex 05, France", 
          "id": "http://www.grid.ac/institutes/grid.463916.f", 
          "name": [
            "Laboratoire de M\u00e9t\u00e9orologie Dynamique, Institut Pierre Simon Laplace (LMD/IPSL), boite 99, 4, place Jussieu, 75252, Paris cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bony", 
        "givenName": "S.", 
        "id": "sg:person.013647160343.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique, Institut Pierre Simon Laplace (LMD/IPSL), boite 99, 4, place Jussieu, 75252, Paris cedex 05, France", 
          "id": "http://www.grid.ac/institutes/grid.463916.f", 
          "name": [
            "Laboratoire de M\u00e9t\u00e9orologie Dynamique, Institut Pierre Simon Laplace (LMD/IPSL), boite 99, 4, place Jussieu, 75252, Paris cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dufresne", 
        "givenName": "J.-L.", 
        "id": "sg:person.01075255253.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075255253.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique, Institut Pierre Simon Laplace (LMD/IPSL), boite 99, 4, place Jussieu, 75252, Paris cedex 05, France", 
          "id": "http://www.grid.ac/institutes/grid.463916.f", 
          "name": [
            "Laboratoire de M\u00e9t\u00e9orologie Dynamique, Institut Pierre Simon Laplace (LMD/IPSL), boite 99, 4, place Jussieu, 75252, Paris cedex 05, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le Treut", 
        "givenName": "H.", 
        "id": "sg:person.01077116450.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077116450.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium Range Weather Forecasts Reading, England", 
          "id": "http://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "European Centre for Medium Range Weather Forecasts Reading, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morcrette", 
        "givenName": "J.-J.", 
        "id": "sg:person.011404346561.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011404346561.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hadley Centre, Meteorological Office, Bracknell, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Hadley Centre, Meteorological Office, Bracknell, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Senior", 
        "givenName": "C.", 
        "id": "sg:person.012173370255.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012173370255.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/351027a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048642785", 
          "https://doi.org/10.1038/351027a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002170907", 
          "https://doi.org/10.1007/s003820050009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61051-6_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025390318", 
          "https://doi.org/10.1007/978-3-642-61051-6_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820100157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036889233", 
          "https://doi.org/10.1007/s003820100157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-002-0303-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086158322", 
          "https://doi.org/10.1007/s00382-002-0303-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-01-27", 
    "datePublishedReg": "2004-01-27", 
    "description": "Abstract\nClouds are sensitive to changes in both the large-scale circulation and the thermodynamic structure of the atmosphere. In the tropics, temperature changes that occur on seasonal to decadal time scales are often associated with circulation changes. Therefore, it is difficult to determine the part of cloud variations that results from a change in the dynamics from the part that may result from the temperature change itself. This study proposes a simple framework to unravel the dynamic and non-dynamic (referred to as thermodynamic) components of the cloud response to climate variations. It is used to analyze the contrasted response, to a prescribed ocean warming, of the tropically-averaged cloud radiative forcing (CRF) simulated by the ECMWF, LMD and UKMO climate models. In each model, the dynamic component largely dominates the CRF response at the regional scale, but this is the thermodynamic component that explains most of the average CRF response to the imposed perturbation. It is shown that this component strongly depends on the behaviour of the low-level clouds that occur in regions of moderate subsidence (e.g. in the trade wind regions). These clouds exhibit a moderate sensitivity to temperature changes, but this is mostly their huge statistical weight that explains their large influence on the tropical radiation budget. Several propositions are made for assessing the sensitivity of clouds to changes in temperature and in large-scale motions using satellite observations and meteorological analyses on the one hand, and mesoscale models on the other hand.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-003-0369-6", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "keywords": [
      "cloud radiative forcing", 
      "thermodynamic component", 
      "tropical radiation budget", 
      "low-level clouds", 
      "sensitivity of clouds", 
      "large-scale circulation", 
      "temperature changes", 
      "circulation changes", 
      "cloud response", 
      "climate models", 
      "radiation budget", 
      "cloud changes", 
      "radiative forcing", 
      "satellite observations", 
      "meteorological analyses", 
      "moderate subsidence", 
      "cloud variations", 
      "ocean warming", 
      "mesoscale model", 
      "thermodynamic structure", 
      "regional scale", 
      "CRF response", 
      "contrasted response", 
      "time scales", 
      "large-scale motions", 
      "cloud", 
      "large influence", 
      "dynamic component", 
      "ECMWF", 
      "forcing", 
      "subsidence", 
      "warming", 
      "tropics", 
      "variation", 
      "budget", 
      "circulation", 
      "atmosphere", 
      "scale", 
      "changes", 
      "simple framework", 
      "part", 
      "temperature", 
      "region", 
      "model", 
      "components", 
      "perturbations", 
      "dynamics", 
      "LMD", 
      "motion", 
      "influence", 
      "response", 
      "sensitivity", 
      "analysis", 
      "hand", 
      "structure", 
      "statistical weights", 
      "moderate sensitivity", 
      "study", 
      "framework", 
      "behavior", 
      "proposition", 
      "weight", 
      "observations"
    ], 
    "name": "On dynamic and thermodynamic components of cloud changes", 
    "pagination": "71-86", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014795140"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-003-0369-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-003-0369-6", 
      "https://app.dimensions.ai/details/publication/pub.1014795140"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_380.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-003-0369-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-003-0369-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-003-0369-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-003-0369-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-003-0369-6'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      92 URIs      79 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-003-0369-6 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N54b2611fdbe24dad909018260162f90a
4 schema:citation sg:pub.10.1007/978-3-642-61051-6_2
5 sg:pub.10.1007/s00382-002-0303-3
6 sg:pub.10.1007/s003820050009
7 sg:pub.10.1007/s003820100157
8 sg:pub.10.1038/351027a0
9 schema:datePublished 2004-01-27
10 schema:datePublishedReg 2004-01-27
11 schema:description Abstract Clouds are sensitive to changes in both the large-scale circulation and the thermodynamic structure of the atmosphere. In the tropics, temperature changes that occur on seasonal to decadal time scales are often associated with circulation changes. Therefore, it is difficult to determine the part of cloud variations that results from a change in the dynamics from the part that may result from the temperature change itself. This study proposes a simple framework to unravel the dynamic and non-dynamic (referred to as thermodynamic) components of the cloud response to climate variations. It is used to analyze the contrasted response, to a prescribed ocean warming, of the tropically-averaged cloud radiative forcing (CRF) simulated by the ECMWF, LMD and UKMO climate models. In each model, the dynamic component largely dominates the CRF response at the regional scale, but this is the thermodynamic component that explains most of the average CRF response to the imposed perturbation. It is shown that this component strongly depends on the behaviour of the low-level clouds that occur in regions of moderate subsidence (e.g. in the trade wind regions). These clouds exhibit a moderate sensitivity to temperature changes, but this is mostly their huge statistical weight that explains their large influence on the tropical radiation budget. Several propositions are made for assessing the sensitivity of clouds to changes in temperature and in large-scale motions using satellite observations and meteorological analyses on the one hand, and mesoscale models on the other hand.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf Ncd4e6eab620e4d219a8313dd66857b98
15 Nfdbcca6ac0254c498d59d06621cd76fe
16 sg:journal.1049631
17 schema:keywords CRF response
18 ECMWF
19 LMD
20 analysis
21 atmosphere
22 behavior
23 budget
24 changes
25 circulation
26 circulation changes
27 climate models
28 cloud
29 cloud changes
30 cloud radiative forcing
31 cloud response
32 cloud variations
33 components
34 contrasted response
35 dynamic component
36 dynamics
37 forcing
38 framework
39 hand
40 influence
41 large influence
42 large-scale circulation
43 large-scale motions
44 low-level clouds
45 mesoscale model
46 meteorological analyses
47 model
48 moderate sensitivity
49 moderate subsidence
50 motion
51 observations
52 ocean warming
53 part
54 perturbations
55 proposition
56 radiation budget
57 radiative forcing
58 region
59 regional scale
60 response
61 satellite observations
62 scale
63 sensitivity
64 sensitivity of clouds
65 simple framework
66 statistical weights
67 structure
68 study
69 subsidence
70 temperature
71 temperature changes
72 thermodynamic component
73 thermodynamic structure
74 time scales
75 tropical radiation budget
76 tropics
77 variation
78 warming
79 weight
80 schema:name On dynamic and thermodynamic components of cloud changes
81 schema:pagination 71-86
82 schema:productId N1bda7d0c9ee94ad1942d3fffd46f5dfd
83 N9a03ba1ead314cab86798abc73718822
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014795140
85 https://doi.org/10.1007/s00382-003-0369-6
86 schema:sdDatePublished 2022-10-01T06:32
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher N0ffe84a29fcb4907a44e3bcd11365e8a
89 schema:url https://doi.org/10.1007/s00382-003-0369-6
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N0ffe84a29fcb4907a44e3bcd11365e8a schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 N19ba47d8b1aa4d4fb60471045ac93ccd rdf:first sg:person.011404346561.01
96 rdf:rest N90c780ea0bc445b4bc7b09ffd8dcd8d9
97 N1bda7d0c9ee94ad1942d3fffd46f5dfd schema:name dimensions_id
98 schema:value pub.1014795140
99 rdf:type schema:PropertyValue
100 N3d9d29bfca7f47ef8372012c9b9fd394 rdf:first sg:person.01075255253.14
101 rdf:rest Nd8eb5bcefcce43f19444bfff41ab48f2
102 N54b2611fdbe24dad909018260162f90a rdf:first sg:person.013647160343.22
103 rdf:rest N3d9d29bfca7f47ef8372012c9b9fd394
104 N90c780ea0bc445b4bc7b09ffd8dcd8d9 rdf:first sg:person.012173370255.92
105 rdf:rest rdf:nil
106 N9a03ba1ead314cab86798abc73718822 schema:name doi
107 schema:value 10.1007/s00382-003-0369-6
108 rdf:type schema:PropertyValue
109 Ncd4e6eab620e4d219a8313dd66857b98 schema:issueNumber 2-3
110 rdf:type schema:PublicationIssue
111 Nd8eb5bcefcce43f19444bfff41ab48f2 rdf:first sg:person.01077116450.69
112 rdf:rest N19ba47d8b1aa4d4fb60471045ac93ccd
113 Nfdbcca6ac0254c498d59d06621cd76fe schema:volumeNumber 22
114 rdf:type schema:PublicationVolume
115 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
116 schema:name Earth Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
119 schema:name Atmospheric Sciences
120 rdf:type schema:DefinedTerm
121 sg:journal.1049631 schema:issn 0930-7575
122 1432-0894
123 schema:name Climate Dynamics
124 schema:publisher Springer Nature
125 rdf:type schema:Periodical
126 sg:person.01075255253.14 schema:affiliation grid-institutes:grid.463916.f
127 schema:familyName Dufresne
128 schema:givenName J.-L.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075255253.14
130 rdf:type schema:Person
131 sg:person.01077116450.69 schema:affiliation grid-institutes:grid.463916.f
132 schema:familyName Le Treut
133 schema:givenName H.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077116450.69
135 rdf:type schema:Person
136 sg:person.011404346561.01 schema:affiliation grid-institutes:grid.42781.38
137 schema:familyName Morcrette
138 schema:givenName J.-J.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011404346561.01
140 rdf:type schema:Person
141 sg:person.012173370255.92 schema:affiliation grid-institutes:grid.17100.37
142 schema:familyName Senior
143 schema:givenName C.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012173370255.92
145 rdf:type schema:Person
146 sg:person.013647160343.22 schema:affiliation grid-institutes:grid.463916.f
147 schema:familyName Bony
148 schema:givenName S.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22
150 rdf:type schema:Person
151 sg:pub.10.1007/978-3-642-61051-6_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025390318
152 https://doi.org/10.1007/978-3-642-61051-6_2
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s00382-002-0303-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086158322
155 https://doi.org/10.1007/s00382-002-0303-3
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s003820050009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002170907
158 https://doi.org/10.1007/s003820050009
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s003820100157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036889233
161 https://doi.org/10.1007/s003820100157
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/351027a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048642785
164 https://doi.org/10.1038/351027a0
165 rdf:type schema:CreativeWork
166 grid-institutes:grid.17100.37 schema:alternateName Hadley Centre, Meteorological Office, Bracknell, UK
167 schema:name Hadley Centre, Meteorological Office, Bracknell, UK
168 rdf:type schema:Organization
169 grid-institutes:grid.42781.38 schema:alternateName European Centre for Medium Range Weather Forecasts Reading, England
170 schema:name European Centre for Medium Range Weather Forecasts Reading, England
171 rdf:type schema:Organization
172 grid-institutes:grid.463916.f schema:alternateName Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace (LMD/IPSL), boite 99, 4, place Jussieu, 75252, Paris cedex 05, France
173 schema:name Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace (LMD/IPSL), boite 99, 4, place Jussieu, 75252, Paris cedex 05, France
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...