Estimating signal amplitudes in optimal fingerprinting, part I: theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-08-29

AUTHORS

M. R. Allen, P. A. Stott

ABSTRACT

There is increasingly clear evidence that human influence has contributed substantially to the large-scale climatic changes that have occurred over the past few decades. Attention is now turning to the physical implications of the emerging anthropogenic signal. Of particular interest is the question of whether current climate models may be over- or under-estimating the amplitude of the climate system's response to external forcing, including anthropogenic. Evidence of a significant error in a model-simulated response amplitude would indicate the existence of amplifying or damping mechanisms that are inadequately represented in the model. The range of uncertainty in the factor by which we can scale model-simulated changes while remaining consistent with observed change provides an estimate of uncertainty in model-based predictions. With any model that displays a realistic level of internal variability, the problem of estimating this factor is complicated by the fact that it represents a ratio between two incompletely known quantities: both observed and simulated responses are subject to sampling uncertainty, primarily due to internal chaotic variability. Sampling uncertainty in the simulated response can be reduced, but not eliminated, through ensemble simulations. Accurate estimation of these scaling factors requires a modification of the standard "optimal fingerprinting" algorithm for climate change detection, drawing on the conventional "total least squares" approach discussed in the statistical literature. Code for both variants of optimal fingerprinting can be found on http://www.climateprediction.net/detection. More... »

PAGES

477-491

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-003-0313-9

DOI

http://dx.doi.org/10.1007/s00382-003-0313-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047305108


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0406", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Geography and Environmental Geoscience", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Atmospheric, Oceanic and Planetary Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK", 
          "id": "http://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "Atmospheric, Oceanic and Planetary Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Allen", 
        "givenName": "M. R.", 
        "id": "sg:person.0600474550.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600474550.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hadley Centre for Climate Prediction and Research, Meteorological Office, UK", 
          "id": "http://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Hadley Centre for Climate Prediction and Research, Meteorological Office, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stott", 
        "givenName": "P. A.", 
        "id": "sg:person.015667030077.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667030077.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature01092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046916950", 
          "https://doi.org/10.1038/nature01092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007895196", 
          "https://doi.org/10.1007/s003820050291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416719a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016686487", 
          "https://doi.org/10.1038/416719a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028989532", 
          "https://doi.org/10.1038/19505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/44266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034790274", 
          "https://doi.org/10.1038/44266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35036559", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016303772", 
          "https://doi.org/10.1038/35036559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/19745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052898494", 
          "https://doi.org/10.1038/19745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008218600", 
          "https://doi.org/10.1007/s003820050186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382039a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029787674", 
          "https://doi.org/10.1038/382039a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00209666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004071925", 
          "https://doi.org/10.1007/bf00209666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026954292", 
          "https://doi.org/10.1007/s003820050331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00007924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044824443", 
          "https://doi.org/10.1007/pl00007924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/21164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039310835", 
          "https://doi.org/10.1038/21164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003820050185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008860100", 
          "https://doi.org/10.1007/s003820050185"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-08-29", 
    "datePublishedReg": "2003-08-29", 
    "description": "Abstract\nThere is increasingly clear evidence that human influence has contributed substantially to the large-scale climatic changes that have occurred over the past few decades. Attention is now turning to the physical implications of the emerging anthropogenic signal. Of particular interest is the question of whether current climate models may be over- or under-estimating the amplitude of the climate system's response to external forcing, including anthropogenic. Evidence of a significant error in a model-simulated response amplitude would indicate the existence of amplifying or damping mechanisms that are inadequately represented in the model. The range of uncertainty in the factor by which we can scale model-simulated changes while remaining consistent with observed change provides an estimate of uncertainty in model-based predictions. With any model that displays a realistic level of internal variability, the problem of estimating this factor is complicated by the fact that it represents a ratio between two incompletely known quantities: both observed and simulated responses are subject to sampling uncertainty, primarily due to internal chaotic variability. Sampling uncertainty in the simulated response can be reduced, but not eliminated, through ensemble simulations. Accurate estimation of these scaling factors requires a modification of the standard \"optimal fingerprinting\" algorithm for climate change detection, drawing on the conventional \"total least squares\" approach discussed in the statistical literature. Code for both variants of optimal fingerprinting can be found on http://www.climateprediction.net/detection.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00382-003-0313-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "keywords": [
      "optimal fingerprinting", 
      "large-scale climatic changes", 
      "model-simulated changes", 
      "current climate models", 
      "climate system response", 
      "Climate Change Detection", 
      "range of uncertainty", 
      "anthropogenic signal", 
      "climate models", 
      "internal variability", 
      "ensemble simulations", 
      "climatic changes", 
      "external forcing", 
      "chaotic variability", 
      "human influence", 
      "estimates of uncertainty", 
      "simulated response", 
      "model-based predictions", 
      "observed changes", 
      "variability", 
      "clear evidence", 
      "forcing", 
      "uncertainty", 
      "significant errors", 
      "anthropogenic", 
      "realistic levels", 
      "change detection", 
      "accurate estimation", 
      "changes", 
      "amplitude", 
      "system response", 
      "fingerprinting", 
      "estimates", 
      "model", 
      "evidence", 
      "particular interest", 
      "Part I", 
      "implications", 
      "decades", 
      "prediction", 
      "signal amplitude", 
      "simulations", 
      "influence", 
      "range", 
      "ratio", 
      "quantity", 
      "estimation", 
      "response", 
      "existence", 
      "error", 
      "physical implications", 
      "factors", 
      "signals", 
      "fact", 
      "least squares", 
      "mechanism", 
      "levels", 
      "modification", 
      "interest", 
      "approach", 
      "questions", 
      "attention", 
      "squares", 
      "code", 
      "problem", 
      "response amplitude", 
      "detection", 
      "algorithm", 
      "theory", 
      "literature", 
      "statistical literature", 
      "total least squares", 
      "variants", 
      "model-simulated response amplitude", 
      "internal chaotic variability"
    ], 
    "name": "Estimating signal amplitudes in optimal fingerprinting, part I: theory", 
    "pagination": "477-491", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047305108"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-003-0313-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-003-0313-9", 
      "https://app.dimensions.ai/details/publication/pub.1047305108"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_367.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00382-003-0313-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-003-0313-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-003-0313-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-003-0313-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-003-0313-9'


 

This table displays all metadata directly associated to this object as RDF triples.

207 TRIPLES      22 PREDICATES      116 URIs      92 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-003-0313-9 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 anzsrc-for:0405
4 anzsrc-for:0406
5 schema:author N58794d9a82fd426597c91fa5048ffd3d
6 schema:citation sg:pub.10.1007/bf00209666
7 sg:pub.10.1007/pl00007924
8 sg:pub.10.1007/s003820050185
9 sg:pub.10.1007/s003820050186
10 sg:pub.10.1007/s003820050291
11 sg:pub.10.1007/s003820050331
12 sg:pub.10.1038/19505
13 sg:pub.10.1038/19745
14 sg:pub.10.1038/21164
15 sg:pub.10.1038/35036559
16 sg:pub.10.1038/382039a0
17 sg:pub.10.1038/416719a
18 sg:pub.10.1038/44266
19 sg:pub.10.1038/nature01092
20 schema:datePublished 2003-08-29
21 schema:datePublishedReg 2003-08-29
22 schema:description Abstract There is increasingly clear evidence that human influence has contributed substantially to the large-scale climatic changes that have occurred over the past few decades. Attention is now turning to the physical implications of the emerging anthropogenic signal. Of particular interest is the question of whether current climate models may be over- or under-estimating the amplitude of the climate system's response to external forcing, including anthropogenic. Evidence of a significant error in a model-simulated response amplitude would indicate the existence of amplifying or damping mechanisms that are inadequately represented in the model. The range of uncertainty in the factor by which we can scale model-simulated changes while remaining consistent with observed change provides an estimate of uncertainty in model-based predictions. With any model that displays a realistic level of internal variability, the problem of estimating this factor is complicated by the fact that it represents a ratio between two incompletely known quantities: both observed and simulated responses are subject to sampling uncertainty, primarily due to internal chaotic variability. Sampling uncertainty in the simulated response can be reduced, but not eliminated, through ensemble simulations. Accurate estimation of these scaling factors requires a modification of the standard "optimal fingerprinting" algorithm for climate change detection, drawing on the conventional "total least squares" approach discussed in the statistical literature. Code for both variants of optimal fingerprinting can be found on http://www.climateprediction.net/detection.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N49ab570f043b4b549a92436dca5de3a2
27 N8351ee25528d4ef19d91aabaebe0d25c
28 sg:journal.1049631
29 schema:keywords Climate Change Detection
30 Part I
31 accurate estimation
32 algorithm
33 amplitude
34 anthropogenic
35 anthropogenic signal
36 approach
37 attention
38 change detection
39 changes
40 chaotic variability
41 clear evidence
42 climate models
43 climate system response
44 climatic changes
45 code
46 current climate models
47 decades
48 detection
49 ensemble simulations
50 error
51 estimates
52 estimates of uncertainty
53 estimation
54 evidence
55 existence
56 external forcing
57 fact
58 factors
59 fingerprinting
60 forcing
61 human influence
62 implications
63 influence
64 interest
65 internal chaotic variability
66 internal variability
67 large-scale climatic changes
68 least squares
69 levels
70 literature
71 mechanism
72 model
73 model-based predictions
74 model-simulated changes
75 model-simulated response amplitude
76 modification
77 observed changes
78 optimal fingerprinting
79 particular interest
80 physical implications
81 prediction
82 problem
83 quantity
84 questions
85 range
86 range of uncertainty
87 ratio
88 realistic levels
89 response
90 response amplitude
91 signal amplitude
92 signals
93 significant errors
94 simulated response
95 simulations
96 squares
97 statistical literature
98 system response
99 theory
100 total least squares
101 uncertainty
102 variability
103 variants
104 schema:name Estimating signal amplitudes in optimal fingerprinting, part I: theory
105 schema:pagination 477-491
106 schema:productId N5bc3bda0cb23416788f45ceb00c5f5a6
107 Nbb311309fa3e4b8f8932dbf7cb774d90
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047305108
109 https://doi.org/10.1007/s00382-003-0313-9
110 schema:sdDatePublished 2021-12-01T19:14
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher N663c9222b03948888c995a51ae627356
113 schema:url https://doi.org/10.1007/s00382-003-0313-9
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N49ab570f043b4b549a92436dca5de3a2 schema:issueNumber 5-6
118 rdf:type schema:PublicationIssue
119 N58794d9a82fd426597c91fa5048ffd3d rdf:first sg:person.0600474550.17
120 rdf:rest Nf383cda68c7c4372b11ac8ae6a906c24
121 N5bc3bda0cb23416788f45ceb00c5f5a6 schema:name doi
122 schema:value 10.1007/s00382-003-0313-9
123 rdf:type schema:PropertyValue
124 N663c9222b03948888c995a51ae627356 schema:name Springer Nature - SN SciGraph project
125 rdf:type schema:Organization
126 N8351ee25528d4ef19d91aabaebe0d25c schema:volumeNumber 21
127 rdf:type schema:PublicationVolume
128 Nbb311309fa3e4b8f8932dbf7cb774d90 schema:name dimensions_id
129 schema:value pub.1047305108
130 rdf:type schema:PropertyValue
131 Nf383cda68c7c4372b11ac8ae6a906c24 rdf:first sg:person.015667030077.29
132 rdf:rest rdf:nil
133 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
134 schema:name Earth Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
137 schema:name Atmospheric Sciences
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
140 schema:name Oceanography
141 rdf:type schema:DefinedTerm
142 anzsrc-for:0406 schema:inDefinedTermSet anzsrc-for:
143 schema:name Physical Geography and Environmental Geoscience
144 rdf:type schema:DefinedTerm
145 sg:journal.1049631 schema:issn 0930-7575
146 1432-0894
147 schema:name Climate Dynamics
148 schema:publisher Springer Nature
149 rdf:type schema:Periodical
150 sg:person.015667030077.29 schema:affiliation grid-institutes:grid.17100.37
151 schema:familyName Stott
152 schema:givenName P. A.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667030077.29
154 rdf:type schema:Person
155 sg:person.0600474550.17 schema:affiliation grid-institutes:grid.4991.5
156 schema:familyName Allen
157 schema:givenName M. R.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0600474550.17
159 rdf:type schema:Person
160 sg:pub.10.1007/bf00209666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004071925
161 https://doi.org/10.1007/bf00209666
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/pl00007924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044824443
164 https://doi.org/10.1007/pl00007924
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s003820050185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008860100
167 https://doi.org/10.1007/s003820050185
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s003820050186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008218600
170 https://doi.org/10.1007/s003820050186
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s003820050291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007895196
173 https://doi.org/10.1007/s003820050291
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s003820050331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026954292
176 https://doi.org/10.1007/s003820050331
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/19505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028989532
179 https://doi.org/10.1038/19505
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/19745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052898494
182 https://doi.org/10.1038/19745
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/21164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039310835
185 https://doi.org/10.1038/21164
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/35036559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016303772
188 https://doi.org/10.1038/35036559
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/382039a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029787674
191 https://doi.org/10.1038/382039a0
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/416719a schema:sameAs https://app.dimensions.ai/details/publication/pub.1016686487
194 https://doi.org/10.1038/416719a
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/44266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034790274
197 https://doi.org/10.1038/44266
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nature01092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046916950
200 https://doi.org/10.1038/nature01092
201 rdf:type schema:CreativeWork
202 grid-institutes:grid.17100.37 schema:alternateName Hadley Centre for Climate Prediction and Research, Meteorological Office, UK
203 schema:name Hadley Centre for Climate Prediction and Research, Meteorological Office, UK
204 rdf:type schema:Organization
205 grid-institutes:grid.4991.5 schema:alternateName Atmospheric, Oceanic and Planetary Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
206 schema:name Atmospheric, Oceanic and Planetary Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
207 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...