Simple indices of global climate variability and change: Part I – variability and correlation structure View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-03

AUTHORS

K. Braganza, D. Karoly, A. Hirst, M. Mann, P. Stott, R. Stouffer, S. Tett

ABSTRACT

Some simple indices are used to describe global climate variability in observational data and climate model simulations. The indices are surface temperature based and include the global-mean, the land–ocean contrast, the meridional gradient, the interhemispheric contrast, and the magnitude of the annual cycle. These indices contain information independent of the variations of the global-mean temperature for unforced climate variations. They also represent the main features of the modelled surface temperature response to increasing greenhouse gases in the atmosphere. Hence, they should have a coherent response for greenhouse climate change. On interannual and decadal time scales, the variability and correlation structure of the indices from long control climate model simulations compare well with those from detrended instrumental observations for the twentieth century and proxy based climate reconstructions for 1700–1900. The indices provide a simple but effective way to evaluate global-scale climate variability in control climate model simulations. On decadal time scales, the observed correlation structure between the indices during the twentieth century shows significant differences from the detrended observations and control model simulations. These changes are consistent with forced climate variations in greenhouse climate change simulations. This suggests that the changes in the correlation structure between these indices can be used as an indicator of climate change. More... »

PAGES

491-502

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-002-0286-0

DOI

http://dx.doi.org/10.1007/s00382-002-0286-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1086153698


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Monash University", 
          "id": "https://www.grid.ac/institutes/grid.1002.3", 
          "name": [
            "School of Mathematical Sciences, Monash University, PO Box 28M Clayton, VIC 3800 Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Braganza", 
        "givenName": "K.", 
        "id": "sg:person.016505424603.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016505424603.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Monash University", 
          "id": "https://www.grid.ac/institutes/grid.1002.3", 
          "name": [
            "School of Mathematical Sciences, Monash University, PO Box 28M Clayton, VIC 3800 Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karoly", 
        "givenName": "D.", 
        "id": "sg:person.01134215130.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134215130.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CSIRO Atmospheric Research, Aspendale, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirst", 
        "givenName": "A.", 
        "id": "sg:person.011300361170.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011300361170.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Virginia", 
          "id": "https://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mann", 
        "givenName": "M.", 
        "id": "sg:person.01066704101.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066704101.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office", 
          "id": "https://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Hadley Centre for Climate Prediction and Research, Meteorological Office, Bracknell, Berks., UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stott", 
        "givenName": "P.", 
        "id": "sg:person.015667030077.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667030077.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Geophysical Fluid Dynamics Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.482795.5", 
          "name": [
            "Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stouffer", 
        "givenName": "R.", 
        "id": "sg:person.015367614247.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015367614247.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office", 
          "id": "https://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Hadley Centre for Climate Prediction and Research, Meteorological Office, Bracknell, Berks., UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tett", 
        "givenName": "S.", 
        "id": "sg:person.01025613710.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025613710.20"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2003-03", 
    "datePublishedReg": "2003-03-01", 
    "description": "Some simple indices are used to describe global climate variability in observational data and climate model simulations. The indices are surface temperature based and include the global-mean, the land\u2013ocean contrast, the meridional gradient, the interhemispheric contrast, and the magnitude of the annual cycle. These indices contain information independent of the variations of the global-mean temperature for unforced climate variations. They also represent the main features of the modelled surface temperature response to increasing greenhouse gases in the atmosphere. Hence, they should have a coherent response for greenhouse climate change. On interannual and decadal time scales, the variability and correlation structure of the indices from long control climate model simulations compare well with those from detrended instrumental observations for the twentieth century and proxy based climate reconstructions for 1700\u20131900. The indices provide a simple but effective way to evaluate global-scale climate variability in control climate model simulations. On decadal time scales, the observed correlation structure between the indices during the twentieth century shows significant differences from the detrended observations and control model simulations. These changes are consistent with forced climate variations in greenhouse climate change simulations. This suggests that the changes in the correlation structure between these indices can be used as an indicator of climate change.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00382-002-0286-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Simple indices of global climate variability and change: Part I \u2013 variability and correlation structure", 
    "pagination": "491-502", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "442029ed85c0dabd2c57c975e04b8fa0b5b5f59086c06fa2c1197e35e3a8e6df"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-002-0286-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1086153698"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-002-0286-0", 
      "https://app.dimensions.ai/details/publication/pub.1086153698"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000517.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00382-002-0286-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-002-0286-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-002-0286-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-002-0286-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-002-0286-0'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-002-0286-0 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N0f0a9ca362d544798bddf9975ad334c1
4 schema:datePublished 2003-03
5 schema:datePublishedReg 2003-03-01
6 schema:description Some simple indices are used to describe global climate variability in observational data and climate model simulations. The indices are surface temperature based and include the global-mean, the land–ocean contrast, the meridional gradient, the interhemispheric contrast, and the magnitude of the annual cycle. These indices contain information independent of the variations of the global-mean temperature for unforced climate variations. They also represent the main features of the modelled surface temperature response to increasing greenhouse gases in the atmosphere. Hence, they should have a coherent response for greenhouse climate change. On interannual and decadal time scales, the variability and correlation structure of the indices from long control climate model simulations compare well with those from detrended instrumental observations for the twentieth century and proxy based climate reconstructions for 1700–1900. The indices provide a simple but effective way to evaluate global-scale climate variability in control climate model simulations. On decadal time scales, the observed correlation structure between the indices during the twentieth century shows significant differences from the detrended observations and control model simulations. These changes are consistent with forced climate variations in greenhouse climate change simulations. This suggests that the changes in the correlation structure between these indices can be used as an indicator of climate change.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N26b09e475d5342b7a170eefdc2c32f44
11 N4b33142d9f1f40838ee21bccf7c80310
12 sg:journal.1049631
13 schema:name Simple indices of global climate variability and change: Part I – variability and correlation structure
14 schema:pagination 491-502
15 schema:productId N5339ec9a633f403e8cb74a6f5422ba19
16 Na0123b4710724314b4694f218c64403c
17 Nef0e85cee8e14335a29823a07e302e4e
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086153698
19 https://doi.org/10.1007/s00382-002-0286-0
20 schema:sdDatePublished 2019-04-10T21:38
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N08f392a2813648d9b7a53b7001562d4b
23 schema:url http://link.springer.com/10.1007%2Fs00382-002-0286-0
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N08f392a2813648d9b7a53b7001562d4b schema:name Springer Nature - SN SciGraph project
28 rdf:type schema:Organization
29 N0e5b04975a7d4e1987ea37ec84282f8b rdf:first sg:person.015367614247.25
30 rdf:rest N2f25de68498e4326b1760dbf8954bc52
31 N0f0a9ca362d544798bddf9975ad334c1 rdf:first sg:person.016505424603.44
32 rdf:rest Na1f909c13c4d467ca749c2e772f6de70
33 N26b09e475d5342b7a170eefdc2c32f44 schema:issueNumber 5
34 rdf:type schema:PublicationIssue
35 N29dff7f3842445b58c23f5651488e058 schema:name CSIRO Atmospheric Research, Aspendale, VIC, Australia
36 rdf:type schema:Organization
37 N2f25de68498e4326b1760dbf8954bc52 rdf:first sg:person.01025613710.20
38 rdf:rest rdf:nil
39 N48625e1ade2948c99bc548afc907a058 rdf:first sg:person.011300361170.54
40 rdf:rest Nb6c7064e8e594336a325f64d1541b85d
41 N4b33142d9f1f40838ee21bccf7c80310 schema:volumeNumber 20
42 rdf:type schema:PublicationVolume
43 N5339ec9a633f403e8cb74a6f5422ba19 schema:name dimensions_id
44 schema:value pub.1086153698
45 rdf:type schema:PropertyValue
46 N882f2576877442f48d65aa0c58ab2eba rdf:first sg:person.015667030077.29
47 rdf:rest N0e5b04975a7d4e1987ea37ec84282f8b
48 Na0123b4710724314b4694f218c64403c schema:name readcube_id
49 schema:value 442029ed85c0dabd2c57c975e04b8fa0b5b5f59086c06fa2c1197e35e3a8e6df
50 rdf:type schema:PropertyValue
51 Na1f909c13c4d467ca749c2e772f6de70 rdf:first sg:person.01134215130.17
52 rdf:rest N48625e1ade2948c99bc548afc907a058
53 Nb6c7064e8e594336a325f64d1541b85d rdf:first sg:person.01066704101.44
54 rdf:rest N882f2576877442f48d65aa0c58ab2eba
55 Nef0e85cee8e14335a29823a07e302e4e schema:name doi
56 schema:value 10.1007/s00382-002-0286-0
57 rdf:type schema:PropertyValue
58 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
59 schema:name Earth Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
62 schema:name Atmospheric Sciences
63 rdf:type schema:DefinedTerm
64 sg:journal.1049631 schema:issn 0930-7575
65 1432-0894
66 schema:name Climate Dynamics
67 rdf:type schema:Periodical
68 sg:person.01025613710.20 schema:affiliation https://www.grid.ac/institutes/grid.17100.37
69 schema:familyName Tett
70 schema:givenName S.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025613710.20
72 rdf:type schema:Person
73 sg:person.01066704101.44 schema:affiliation https://www.grid.ac/institutes/grid.27755.32
74 schema:familyName Mann
75 schema:givenName M.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066704101.44
77 rdf:type schema:Person
78 sg:person.011300361170.54 schema:affiliation N29dff7f3842445b58c23f5651488e058
79 schema:familyName Hirst
80 schema:givenName A.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011300361170.54
82 rdf:type schema:Person
83 sg:person.01134215130.17 schema:affiliation https://www.grid.ac/institutes/grid.1002.3
84 schema:familyName Karoly
85 schema:givenName D.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134215130.17
87 rdf:type schema:Person
88 sg:person.015367614247.25 schema:affiliation https://www.grid.ac/institutes/grid.482795.5
89 schema:familyName Stouffer
90 schema:givenName R.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015367614247.25
92 rdf:type schema:Person
93 sg:person.015667030077.29 schema:affiliation https://www.grid.ac/institutes/grid.17100.37
94 schema:familyName Stott
95 schema:givenName P.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667030077.29
97 rdf:type schema:Person
98 sg:person.016505424603.44 schema:affiliation https://www.grid.ac/institutes/grid.1002.3
99 schema:familyName Braganza
100 schema:givenName K.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016505424603.44
102 rdf:type schema:Person
103 https://www.grid.ac/institutes/grid.1002.3 schema:alternateName Monash University
104 schema:name School of Mathematical Sciences, Monash University, PO Box 28M Clayton, VIC 3800 Australia
105 rdf:type schema:Organization
106 https://www.grid.ac/institutes/grid.17100.37 schema:alternateName Met Office
107 schema:name Hadley Centre for Climate Prediction and Research, Meteorological Office, Bracknell, Berks., UK
108 rdf:type schema:Organization
109 https://www.grid.ac/institutes/grid.27755.32 schema:alternateName University of Virginia
110 schema:name Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
111 rdf:type schema:Organization
112 https://www.grid.ac/institutes/grid.482795.5 schema:alternateName Geophysical Fluid Dynamics Laboratory
113 schema:name Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...