Simple indices of global climate variability and change: Part I – variability and correlation structure View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-03

AUTHORS

K. Braganza, D. Karoly, A. Hirst, M. Mann, P. Stott, R. Stouffer, S. Tett

ABSTRACT

Some simple indices are used to describe global climate variability in observational data and climate model simulations. The indices are surface temperature based and include the global-mean, the land–ocean contrast, the meridional gradient, the interhemispheric contrast, and the magnitude of the annual cycle. These indices contain information independent of the variations of the global-mean temperature for unforced climate variations. They also represent the main features of the modelled surface temperature response to increasing greenhouse gases in the atmosphere. Hence, they should have a coherent response for greenhouse climate change. On interannual and decadal time scales, the variability and correlation structure of the indices from long control climate model simulations compare well with those from detrended instrumental observations for the twentieth century and proxy based climate reconstructions for 1700–1900. The indices provide a simple but effective way to evaluate global-scale climate variability in control climate model simulations. On decadal time scales, the observed correlation structure between the indices during the twentieth century shows significant differences from the detrended observations and control model simulations. These changes are consistent with forced climate variations in greenhouse climate change simulations. This suggests that the changes in the correlation structure between these indices can be used as an indicator of climate change. More... »

PAGES

491-502

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00382-002-0286-0

DOI

http://dx.doi.org/10.1007/s00382-002-0286-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1086153698


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Monash University", 
          "id": "https://www.grid.ac/institutes/grid.1002.3", 
          "name": [
            "School of Mathematical Sciences, Monash University, PO Box 28M Clayton, VIC 3800 Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Braganza", 
        "givenName": "K.", 
        "id": "sg:person.016505424603.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016505424603.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Monash University", 
          "id": "https://www.grid.ac/institutes/grid.1002.3", 
          "name": [
            "School of Mathematical Sciences, Monash University, PO Box 28M Clayton, VIC 3800 Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karoly", 
        "givenName": "D.", 
        "id": "sg:person.01134215130.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134215130.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CSIRO Atmospheric Research, Aspendale, VIC, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirst", 
        "givenName": "A.", 
        "id": "sg:person.011300361170.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011300361170.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Virginia", 
          "id": "https://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mann", 
        "givenName": "M.", 
        "id": "sg:person.01066704101.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066704101.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office", 
          "id": "https://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Hadley Centre for Climate Prediction and Research, Meteorological Office, Bracknell, Berks., UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stott", 
        "givenName": "P.", 
        "id": "sg:person.015667030077.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667030077.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Geophysical Fluid Dynamics Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.482795.5", 
          "name": [
            "Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stouffer", 
        "givenName": "R.", 
        "id": "sg:person.015367614247.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015367614247.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office", 
          "id": "https://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Hadley Centre for Climate Prediction and Research, Meteorological Office, Bracknell, Berks., UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tett", 
        "givenName": "S.", 
        "id": "sg:person.01025613710.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025613710.20"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2003-03", 
    "datePublishedReg": "2003-03-01", 
    "description": "Some simple indices are used to describe global climate variability in observational data and climate model simulations. The indices are surface temperature based and include the global-mean, the land\u2013ocean contrast, the meridional gradient, the interhemispheric contrast, and the magnitude of the annual cycle. These indices contain information independent of the variations of the global-mean temperature for unforced climate variations. They also represent the main features of the modelled surface temperature response to increasing greenhouse gases in the atmosphere. Hence, they should have a coherent response for greenhouse climate change. On interannual and decadal time scales, the variability and correlation structure of the indices from long control climate model simulations compare well with those from detrended instrumental observations for the twentieth century and proxy based climate reconstructions for 1700\u20131900. The indices provide a simple but effective way to evaluate global-scale climate variability in control climate model simulations. On decadal time scales, the observed correlation structure between the indices during the twentieth century shows significant differences from the detrended observations and control model simulations. These changes are consistent with forced climate variations in greenhouse climate change simulations. This suggests that the changes in the correlation structure between these indices can be used as an indicator of climate change.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00382-002-0286-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1049631", 
        "issn": [
          "0930-7575", 
          "1432-0894"
        ], 
        "name": "Climate Dynamics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Simple indices of global climate variability and change: Part I \u2013 variability and correlation structure", 
    "pagination": "491-502", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "442029ed85c0dabd2c57c975e04b8fa0b5b5f59086c06fa2c1197e35e3a8e6df"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00382-002-0286-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1086153698"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00382-002-0286-0", 
      "https://app.dimensions.ai/details/publication/pub.1086153698"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000517.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00382-002-0286-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00382-002-0286-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00382-002-0286-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00382-002-0286-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00382-002-0286-0'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00382-002-0286-0 schema:about anzsrc-for:04
2 anzsrc-for:0401
3 schema:author N5f0fd27875fb4304959bbaaae5c78dd4
4 schema:datePublished 2003-03
5 schema:datePublishedReg 2003-03-01
6 schema:description Some simple indices are used to describe global climate variability in observational data and climate model simulations. The indices are surface temperature based and include the global-mean, the land–ocean contrast, the meridional gradient, the interhemispheric contrast, and the magnitude of the annual cycle. These indices contain information independent of the variations of the global-mean temperature for unforced climate variations. They also represent the main features of the modelled surface temperature response to increasing greenhouse gases in the atmosphere. Hence, they should have a coherent response for greenhouse climate change. On interannual and decadal time scales, the variability and correlation structure of the indices from long control climate model simulations compare well with those from detrended instrumental observations for the twentieth century and proxy based climate reconstructions for 1700–1900. The indices provide a simple but effective way to evaluate global-scale climate variability in control climate model simulations. On decadal time scales, the observed correlation structure between the indices during the twentieth century shows significant differences from the detrended observations and control model simulations. These changes are consistent with forced climate variations in greenhouse climate change simulations. This suggests that the changes in the correlation structure between these indices can be used as an indicator of climate change.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N650877530e0b462e82c1d3e9b2692b4b
11 N782b0a2f131b44058a61266e80a49019
12 sg:journal.1049631
13 schema:name Simple indices of global climate variability and change: Part I – variability and correlation structure
14 schema:pagination 491-502
15 schema:productId N033d1f2cec104111b3d7bdbcc59d43ab
16 N210064ac81cb4be4aae719c470e7ce68
17 N68e3c04bdf5b402d870ab4b3eb89df0e
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086153698
19 https://doi.org/10.1007/s00382-002-0286-0
20 schema:sdDatePublished 2019-04-10T21:38
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N01a7d8e49d234fbf85f66d681af0606d
23 schema:url http://link.springer.com/10.1007%2Fs00382-002-0286-0
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N01a7d8e49d234fbf85f66d681af0606d schema:name Springer Nature - SN SciGraph project
28 rdf:type schema:Organization
29 N033d1f2cec104111b3d7bdbcc59d43ab schema:name doi
30 schema:value 10.1007/s00382-002-0286-0
31 rdf:type schema:PropertyValue
32 N0d12852579034ca7a1bcd74efdc11ea7 rdf:first sg:person.015367614247.25
33 rdf:rest Na78131d9330046858b67100a3456c3fb
34 N210064ac81cb4be4aae719c470e7ce68 schema:name readcube_id
35 schema:value 442029ed85c0dabd2c57c975e04b8fa0b5b5f59086c06fa2c1197e35e3a8e6df
36 rdf:type schema:PropertyValue
37 N3075377d29a34f679d3e4370292ad801 rdf:first sg:person.011300361170.54
38 rdf:rest N993ee4dcc0694f4cbcf401787a92a637
39 N5f0fd27875fb4304959bbaaae5c78dd4 rdf:first sg:person.016505424603.44
40 rdf:rest Nfce5ec6f9ad9497e9c5320d4d376ea2e
41 N650877530e0b462e82c1d3e9b2692b4b schema:issueNumber 5
42 rdf:type schema:PublicationIssue
43 N68e3c04bdf5b402d870ab4b3eb89df0e schema:name dimensions_id
44 schema:value pub.1086153698
45 rdf:type schema:PropertyValue
46 N782b0a2f131b44058a61266e80a49019 schema:volumeNumber 20
47 rdf:type schema:PublicationVolume
48 N8a731afdbbf94787bcf049c4f620165d rdf:first sg:person.015667030077.29
49 rdf:rest N0d12852579034ca7a1bcd74efdc11ea7
50 N993ee4dcc0694f4cbcf401787a92a637 rdf:first sg:person.01066704101.44
51 rdf:rest N8a731afdbbf94787bcf049c4f620165d
52 Na4dcb5d038db404b86a03773556926cc schema:name CSIRO Atmospheric Research, Aspendale, VIC, Australia
53 rdf:type schema:Organization
54 Na78131d9330046858b67100a3456c3fb rdf:first sg:person.01025613710.20
55 rdf:rest rdf:nil
56 Nfce5ec6f9ad9497e9c5320d4d376ea2e rdf:first sg:person.01134215130.17
57 rdf:rest N3075377d29a34f679d3e4370292ad801
58 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
59 schema:name Earth Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
62 schema:name Atmospheric Sciences
63 rdf:type schema:DefinedTerm
64 sg:journal.1049631 schema:issn 0930-7575
65 1432-0894
66 schema:name Climate Dynamics
67 rdf:type schema:Periodical
68 sg:person.01025613710.20 schema:affiliation https://www.grid.ac/institutes/grid.17100.37
69 schema:familyName Tett
70 schema:givenName S.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01025613710.20
72 rdf:type schema:Person
73 sg:person.01066704101.44 schema:affiliation https://www.grid.ac/institutes/grid.27755.32
74 schema:familyName Mann
75 schema:givenName M.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01066704101.44
77 rdf:type schema:Person
78 sg:person.011300361170.54 schema:affiliation Na4dcb5d038db404b86a03773556926cc
79 schema:familyName Hirst
80 schema:givenName A.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011300361170.54
82 rdf:type schema:Person
83 sg:person.01134215130.17 schema:affiliation https://www.grid.ac/institutes/grid.1002.3
84 schema:familyName Karoly
85 schema:givenName D.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134215130.17
87 rdf:type schema:Person
88 sg:person.015367614247.25 schema:affiliation https://www.grid.ac/institutes/grid.482795.5
89 schema:familyName Stouffer
90 schema:givenName R.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015367614247.25
92 rdf:type schema:Person
93 sg:person.015667030077.29 schema:affiliation https://www.grid.ac/institutes/grid.17100.37
94 schema:familyName Stott
95 schema:givenName P.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015667030077.29
97 rdf:type schema:Person
98 sg:person.016505424603.44 schema:affiliation https://www.grid.ac/institutes/grid.1002.3
99 schema:familyName Braganza
100 schema:givenName K.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016505424603.44
102 rdf:type schema:Person
103 https://www.grid.ac/institutes/grid.1002.3 schema:alternateName Monash University
104 schema:name School of Mathematical Sciences, Monash University, PO Box 28M Clayton, VIC 3800 Australia
105 rdf:type schema:Organization
106 https://www.grid.ac/institutes/grid.17100.37 schema:alternateName Met Office
107 schema:name Hadley Centre for Climate Prediction and Research, Meteorological Office, Bracknell, Berks., UK
108 rdf:type schema:Organization
109 https://www.grid.ac/institutes/grid.27755.32 schema:alternateName University of Virginia
110 schema:name Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
111 rdf:type schema:Organization
112 https://www.grid.ac/institutes/grid.482795.5 schema:alternateName Geophysical Fluid Dynamics Laboratory
113 schema:name Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...